Skip to main content
Log in

The structure of metamict zircon: A temperature-dependent EXAFS study

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The thermal annealing (300–1700 K) of two metamict zircons (Ampagabe, Madagascar and Näegy, Japan) has been studied using X-Ray Diffraction (XRD) and Extended X-ray Absorption Fine Structure spectroscopy (EXAFS) at Zr K-edge. Two stages of thermal annealing within the aperiodic zircon are evidenced between 293 and 1700 K. The first stage (up to 600° C) shows a decrease of the a 0-cell parameter from 6.674 (at 300° C) to 6.610 (at 600° C)± 0.005 Å. In that temperature range, the average local environment around Zr (presence of VIIZr and d(Zr-Zr) ≈ 3.3–3.6 Å) shows a weak, but significant increase of the Zr-Zr correlations located at 3.3–3.4 Å, undetectable by XRD. At temperatures up to 700° C (stage 2), the XRD-Bragg component arising from crystalline zircon increases in magnitude, whereas, Zr-K EXAFS analysis indicates a progressive VIIZr→VIIIZr transition, associated with a recovery of the crystalline zircon medium-range environment. For both techniques, the zircon structure is fully recovered at annealing temperatures up to 900° C.

Electrostatic modelings suggest that the VIIIZr→VIIZr transition observed in zircon with increasing alpha-decay damage creates significantly overbonded oxygen atoms around Zr. With increasing temperature, those oxygen atoms are better bonded to VIIZr, due to the thermal expansion of the Zr-O bond. The congruent recovery of the zircon structure should therefore be favoured with increasing temperature. On the other hand, the metamict network can be also partially reorganized around 400–500° C, with the creation of Zr-rich domains, as measured by EXAFS. However, the growth of these domains after 3 hours annealing affects only minor portions of the aperiodic network. This model is corroborated by a similar thermal behaviour observed for a synthetic sol-gel of ZrO2 · SiO2 composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aines RD, Rossman GR (1985) The high temperature behavior of trace hydrous components in silicate minerals. Am Mineral 70:1169–1179

    Google Scholar 

  • Aines RD, Rossman GR (1986) Relationships between radiation damage and trace water in zircon, quartz and topaz. Am Mineral 71:1186–1193

    Google Scholar 

  • Andrault D, Poirier JP (1991) Evolution of the distortion of perovskites under pressure: an EXAFS study of BaZrO3, SrZrO3 and CaGeO3. Phys Chem Minerals 18:91–105

    Google Scholar 

  • Besairie H (1970) Description géologique du Massif Ancien de Madagascar. Doc Service géol, 177 (a-d). Ministère des Mines et de l'Energie, Direction des Mines et de l'Energie, Tananarive (in French), 339 p

  • Biggar GM, O'Hara MJ (1969) A comparison of gel and glass starting materials for phase equilibria studies. Mineral Mag 37:198–205

    Google Scholar 

  • Bonnin D, Calas G, Suquet H, Pezerat H (1985) Site occupancy of Fe3+ in Garfield nontronite: a spectroscopic study. Phys Chem Minerals 12:55–64

    Google Scholar 

  • Brese NE, O'Keefe M (1991) Bond-valence parameters in solids. Acta Crystallogr B47:192–197

    Google Scholar 

  • Brown GE Jr, Calas G, Waychunas GA, Petiau J (1988) X-ray absorption spectroscopy: applications in Mineralogy and Geochemistry. Reviews in Mineralogy, 18, The American Mineralogical Society, pp 431–512

  • Brown ID (1988) What factors determine cation coordination numbers? Acta Crystallogr B44:545–553

    Google Scholar 

  • Brown ID, Altermatt D (1985) Bond valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr B41:244–247

    Google Scholar 

  • Bursill LA, McLaren AC (1966) Transmission electron microscope study of natural radiation damage in zircon (ZrSiO4). Phys Stat Sol 13:331–343

    Google Scholar 

  • Calas G, Brown GE Jr, Waychunas GA, Petiau J (1987) X-Ray absorption Spectroscopic studies of silicate glasses and minerals. Phys Chem Minerals 15:19–20

    Google Scholar 

  • Chakoumakos BB, Murakami T, Lumpkin GR, Ewing RC (1987) Alpha-decay-induced fracturing in zircon: the transition from the crystalline to metamict state. Science 236:1493–1600

    Google Scholar 

  • Eisenberger P, Brown GS (1979) The study of disordered systems by EXAFS: limitations. Sol State Comm 29:481–484

    Google Scholar 

  • Ewing RC, Chakoumakos BC, Lumpkin GR, Murakami T, Greegor RB, Lytle FW (1988) Metamict minerals: natural analogues for radiation damage effects in ceramic nuclear waste forms. Nucl Instr Meth B32:487–497

    Google Scholar 

  • Ewing RC, Chakoumakos BC, Lumpkin GR, Murakami T (1987) The metamict state. Mat Res Soc Bull 12:58–66

    Google Scholar 

  • Exarhos GD (1984) Induced swelling in radiation damaged ZrSiO4. Nucl Instr Meth B1: 538–541

    Google Scholar 

  • Farges F, Calas G (1991) Structural analysis of alpha-radiation damage in zircon and thorite: a x-ray absorption study. Am Mineral 76:60–73

    Google Scholar 

  • Farges F, Ponader CW, Brown GE, Jr (1991) Local environment around incompatible elements in silicate glass/melt systems. I: Zr at trace levels. Geochimica Cosmochim Acta 55:1563–1574

    Google Scholar 

  • Farges F, Ewing RC, Brown GE, Jr (1993) The structure of aperiodic, metamict, (Ca, Th) ZrTi2O7: an EXAFS study of the Zr, Th and U sites. J Mat Res 8:1983–1995

    Google Scholar 

  • Foëx M, Traverse JP, Coutures J (1967) Etude de la structure cristalline des zirconates alcalinoterreux à haute température. CR Acad Sci Paris C 264:1837–1843

    Google Scholar 

  • Harker AB, Flintoff JF (1985) Crystalline-phase formation in hot isostasic pressing of nuclear waste ceramics with high zirconia content. J Am Ceram Soc 68:159

    Google Scholar 

  • Hazen RM, Finger LW (1979) Crystal structure and compressibility of zircon at high pressure. Am Mineral 64:157–161

    Google Scholar 

  • Hazen RM, Finger LW (1982) Comparative crystal chemistry. Temperature, pressure composition and the variation of crystal structure. Wiley & Sons, New York, 231 p

    Google Scholar 

  • Headley TJ, Ewing RC, Haaker RF (1981) Amorphous structure of metamict minerals observed by TEM. Nature 293:449–450

    Google Scholar 

  • Holland HD, Gottfried D (1955) The effects of nuclear radiation on the structure of zircon. Acta Crystallogr 8:291–300

    Google Scholar 

  • Howard CJ, Hill RJ, Reichert BE (1988) Structures of the ZrO2 polymorphs at room temperature by high resolution neutron powder diffraction. Acta Crystallogr B44:116–120

    Google Scholar 

  • Hubin P, Tarte P (1971) Application de la spectrométrie d'absorption infrarouge à l'étude de la recristallisation de thorites métamictes. Bull Soc Fr Minéral-Cristallogr 94:471–476

    Google Scholar 

  • de Jong BHWS, Ewing RC, Veeman WS (1991) 29Si MASNMR shows no structural similarity between amorphous-crystalline pairs in zircon. Eos 72:555

    Google Scholar 

  • Krogh TE, Davis GL (1975) Alteration in zircons and differential dissolution of latered and metamict zircon. Carn Inst Wash Yearbook (Geophys Lab) 74:619–623

    Google Scholar 

  • Lipova IM, Kusnetsova GA, Markarov YeS (1965) An investigation of the metamict state in zircons and cyrtolites. Geochem Int 2:513–525 (Geokhimiya 6:681–694)

    Google Scholar 

  • Lumpkin GR, Ewing BC (1988) Alpha-decay damage in minerals of the pyrochlore group. Phys Chem Minerals 16:2–20

    Google Scholar 

  • Lutze W, Ewing RC (1988) Summary and evaluation of nuclear waste forms. In W Lutze, RC Ewing (ed) Radioactive waste forms for the future, 699–740, Elsevier, Berlin

    Google Scholar 

  • Murakami T, Chakoumakos BC, Ewing RC (1986) X-Ray Powder diffraction Analysis of alpha-event radiation damage in zircon (ZrSiO4). In DE Clark, WB White, J Machiels (ed) Nuclear waste management II, Advances in Ceramics, 20, American Ceramic Society, Columbus (Ohio), pp 745–753

    Google Scholar 

  • Murakami T, Chakoumakos BC, Ewing RC, Lumpkin G, Weber WJ (1991) Alpha-decay event damage in zircon. Am Mineral 76:1510–1532

    Google Scholar 

  • Mursic Z, Vogt T, Boysen H, Frey F (1993) Single-crystal neutron diffraction study of metamict zircon up to 2000 K. Acta Crystallogr (in press)

  • Nakaï I, Akimoto J, Imafuku M, Miyawaki R, Sugitani Y, Koto K (1987) Characterization of the amorphous state in metamict silicates and niobates by EXAFS and XANES analyses. Phys Chem Minerals 15:113–124

    Google Scholar 

  • Pauling L (1929) The principles determining the structure of complex ionic crystals. J Am Chem Soc 51:1010–1026

    Google Scholar 

  • Pellas P (1965) Etude sur la recristallisation thermique des zircons métamictes. Mém Mus Nat Hist nat Paris, C: 12, 227–253

    Google Scholar 

  • Petit J-C, Langevin Y, Dran J-C (1985) Radiation-enhanced release of uranium from accessory minerals in crystalline rocks. Geochimica Cosmochim Acta 49:871–876

    Google Scholar 

  • Pyatenko YA (1970) Behavior of metamict minerals on heating and the general problem of metamictization. Geochemistry International 7:758–763

    Google Scholar 

  • Schärer U, Allègre CJ (1982) Uranium-lead system in fragments of a single zircon grain. Nature 295:585–587

    Google Scholar 

  • Silver LT, Deutsch S (1963) Uranium-lead isotopic variations in zircons: A case Study. J Geol 71:721–758

    Google Scholar 

  • Sugiyama K, Waseda Y (1989) Structural study of the metamict states by X-ray diffraction: In the case of naegite. Mineral J 14:303–309

    Google Scholar 

  • Takabatake A (1962) In: Saito M, Hashimoto K, Sawata H, Shimazaki Y (eds), Geology and Ressources of Japan (2nd edition), Geological Survey of Japan, 143–170

  • Taylor M, Ewing RC (1978) The crystal structure of ThSiO4 polymorphs: huttonite and thorite. Acta Crystallogr B34:1074–1079

    Google Scholar 

  • Teo BK (1986) EXAFS: basic principles and data analysis. Inorganic Chemistry Concepts, vol. 9, Springer-Verlag, Berlin

    Google Scholar 

  • Tole MP (1985) The kinetics of dissolution of zircon (ZrSiO4). Geochim Cosmochim Acta 49:453–458

    Google Scholar 

  • Vance ER (1975) α-Recoil damage in zircon. Rad Effects 24:1–6

    Google Scholar 

  • Vance ER, Anderson BW (1972) Metamict zircons from Ceylan. Mineral Mag 38:605–613

    Google Scholar 

  • Vance ER, Efstathiou L, Hsu FH (1980) X-Ray and positron annihilation studies of radiation damage in natural zircons. Rad Effects 52:61–68

    Google Scholar 

  • Watson EB (1979) Zircon saturation in felsic liquids: experimental data and applications to trace element geochemistry. Contr Mineral Petrol 70:407–419

    Google Scholar 

  • Watson EB, Harrison TM (1983) Zircon saturation revisited; temperature and composition effects in a variety of crustal magma types. Earth Planet Sci Lett 64:295–304

    Google Scholar 

  • Weber WJ (1990) Radiation-induced defects and amorphization in zircon. J Mater Res 5:2687–2697

    Google Scholar 

  • Weber WJ (1991) Self-radiation damage and recovery in Pu-doped zircon. Rad Effects 115:341–349

    Google Scholar 

  • Woodhead JA, Rossman GR, Silver LT (1991a) The metamictization of zircon: radiation dose-dependant structural characteristics. Am Mineral 76:74–82

    Google Scholar 

  • Woodhead JA, Rossman GR, Thomas AP (1991b) Hydrous species in zircon. Am Mineral 76:1533–1546

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farges, F. The structure of metamict zircon: A temperature-dependent EXAFS study. Phys Chem Minerals 20, 504–514 (1994). https://doi.org/10.1007/BF00203221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00203221

Keywords

Navigation