Skip to main content
Log in

4He diffusion in specular hematite

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

In order to test the chronometer qualities of speculante for the (U + Th)/He dating method, 4He release experiments by stepwise heating of two specularites from the Rimbach mineralization locality in the southern Vosgues (France) have been carried out. The diffusion coefficients define linear Arrhenius plots within a temperature interval of 250 to 830 °C, which is suggestive of volume diffusion. Extrapolation of the diffusion behavior to 20° C yields diffusion coefficients (D20 values) smaller than 10−26 [cm2 s−1] for both hematites with activation energies at 116 [kJ/mole]. The results of our study suggest that specularite is a very helium retentive hematite variety which is capable of quantitatively retaining radiogenic helium over geologic periods of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrens LH (1955) The convergent lead ages of the oldest monazites and uraninites. Geochim Cosmochim Acta 7:294–298

    Google Scholar 

  • Bähr R (1987) Das (U + Th)/He-System in Hämatit als Chronometer für Mineralisationen. Dr rer nat thesis, Univ of Heidelberg, 245 pp, Heidelberger geow. Abh. Bd 4

    Google Scholar 

  • Boschmann Käthler W (1986) Uran und Helium in Erzmineralien und die Frage ihrer Datierbarkeit. Dr rer nat thesis, Univ of Heidelberg, 234 pp

  • Damon PE (1970) A theory of ‘real’ K-Ar clocks. Eclogae Geol Helv 63/1:69–76

    Google Scholar 

  • Dodson MH (1973) Closure temperature in cooling geochronological and petrological systems. Contrib Mineral Petr 40:259–274

    Google Scholar 

  • Fanale FP, Kulp JL (1962) The helium method and the age of Cornwall, Pennsylvania magnetite ore. Econ Geol 57:735–746

    Google Scholar 

  • Fechtig H, Kalbitzer S (1966) The diffusion or organ in potassiumbearing solids. In: Schaeffer OA, Zaehringer J (eds). Potassium Argon Dating: Springer, Berlin Heidelberg New York, pp 68–107

    Google Scholar 

  • Herr W, Merz E (1955) Zur Bestimmung der Halbwertszeit des 187Re. Z Naturforsch 10a:613–615

    Google Scholar 

  • Lippolt HJ, Bähr R, Boschmann W (1989) 4He diffusion from ore minerals, especially from hematite. Terra Abstr 1/1:355

    Google Scholar 

  • Lippolt HJ, Boschmann Käthler W, Arndt H (1982) Helium und Uran in Schwarzwälder Bleiglänzen, ein Datierungsversuch. Oberrhein geol Abh 31:31–46

    Google Scholar 

  • Lippolt HJ, Gentner W, Wimmenauer W (1963) Alterbestimmung nach der Kalium-Argon-Methode an tertiären Eruptivgesteinen Südwestdeutschlands. Jh Geol Landesamt Baden-Württ 6:507–538

    Google Scholar 

  • Lippolt HJ, Weigel E (1988) 4He diffusion in 40Ar-retentive minerals. Geochim Cosmochim Acta 52:1449–1458

    Google Scholar 

  • Novakovic L, Sreckovic A, Dojcilovic J, Napijalo M (1987) Physical properties of hematite near the high temperature magnetic phase transition. High temp-high press 19:437–442

    Google Scholar 

  • Ramdohr P, Struntz H (1978) Klockmanns Lehrbuch der Mineralogie. Ferdinand Enke, Stuttgart

    Google Scholar 

  • Rösler HJ (1979) Lehrbuch der Mineralogie. Deutscher Verlag für Grundstoffindustrie, Leipzig

    Google Scholar 

  • Saito T (1965) The anomalous thermal expansion of hematite at a high temperature. Bull Chem Soc Japan 38:2008–2009

    Google Scholar 

  • Schnaebele E (1914) Die Mineralgänge des oberen Dollertales und ihre Nebengesteine. Mitt Geol Landesamt Elsaß-Lothringen IX/1:159–272

    Google Scholar 

  • Segev A, Halicz L, Lang B, Steinitz G (1991) K-Ar dating of manganese minerals from the Eisenbach region, Black Forest, southwest Germany. Schweiz Mineral Petrol Mitt 71:101–114

    Google Scholar 

  • Staudacher T, Jessberger EK, Dörflinger D, Kiko J (1978) A refined ultra high-vacuum furnace for rare gas analysis. J Phys E Sci Instr 11:781–789

    Google Scholar 

  • Stokking LB, Tauxe L (1987) Acquisition of chemical remanent magnetization by synthetic iron oxide. Nature 327:610–612

    Google Scholar 

  • Strutt RJ (1905) On the radioactive minerals. Proc Roy Soc London A76:88–101

    Google Scholar 

  • Strutt RJ (1910) On the accumulation of helium in geological time II. Proc Roy Soc London A83:96–99

    Google Scholar 

  • Wernicke RS, Lippolt HJ (1993) Botryoidal hematite from the Schwarzwald (Germany): heterogeneous uranium distributions and their bearing on the helium dating method. Earth Planet Sci Lett 114:287–300

    Google Scholar 

  • York D, Hasliwec A, Kuybida P, Hanes JA, Hall CH, Kenyon WJ, Spooner ETC, Scott SD (1982) 40Ar/39Ar dating of pyrite. Nature 300:52–53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Now at Gesellschaft für Anlagen- und Reaktorsicherheit (GRS)mbH, Schwertnergasse 1, D-50667 Köln, Germany

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lippolt, H.J., Wernicke, R.S. & Boschmann, W. 4He diffusion in specular hematite. Phys Chem Minerals 20, 415–418 (1993). https://doi.org/10.1007/BF00203111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00203111

Keywords

Navigation