Physics and Chemistry of Minerals

, Volume 20, Issue 6, pp 407–414 | Cite as

A quantum mechanical study of the perovskite structure type of MgSiO3

  • Ph. D'Arco
  • G. Sandrone
  • R. Dovesi
  • R. Orlando
  • V. R. Saunders


The periodic ab-initio Hartree-Fock Self Consistent Field program CRYSTAL has been used to study the electronic structure and equation of state of MgSiO3 perovskite. Three space groups were considered: Pm3m (cubic; ideal untilted SiO6 octahedra), P4/mbm (tetragonal; the octahedra are allowed to deform along and rotate about the crystallographic c cell edge) and Pbnm (orthorhombic; octahedra are allowed to deform along and rotate about the three cell edges).

The calculated orthorhombic structure is the most stable, in agreement with experiment. The relative stability of the three structures and the effect of pressure on the SiO6 octahedra is interpreted in terms of bond population data and is mainly determined by the oxygen-oxygen repulsion.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bouaziz A, Silvi B, D'Arco Ph 1993 Pseudopotential Periodic Hartree-Fock study of Mg2SiO4 polymorphs: olivine, modified spinel and spinel. Phys Chem Minerals, Under PressGoogle Scholar
  2. Carlsson L (1967) High-temperature phase transitions in SrZrO3. Acta Cryst, 23, 901–905Google Scholar
  3. Causá M, Dovesi R, Pisani C, Roetti C (1986) Electronic Structure and Stability of Different Crystal Phases of Magnesium Oxide. Phys Rev B33:1308–1316Google Scholar
  4. Cohen RE, Boyer LE, Mehl MJ, Pickett WE, Krekener H (1989) Electronic Structure and Total Energy Calculations of Oxides Perovskites and Superconductors. In: Navrotsky A, Weidner DJ (eds) Perovskite: a Structure of Great Interest to Geophysics and Materials Science Washington: Am Geophys Union, Geophys Monograph 45:55–65Google Scholar
  5. Dovesi R, Pisani C, Roetti C, Saunders VR, CRYSTAL 88. Program no 577, Quantum Chemistry Program Exchange, Indiana University, Bloomington, IndGoogle Scholar
  6. Dovesi R, Pisani C, Roetti C, Silvi B (1987) The electronic structure of α-quartz: a periodic Hartree-Fock calculation. J Chem Phys 86:6967–6971Google Scholar
  7. Dovesi R, Roetti C, Freyria-Fava C, Aprà E, Saunders VR, Harrison NM (1992) Ab initio Hartree Fock treatment of ionic and semi-ionic compounds. State of the art. Phil Trans R Soc Lond A341:203–210Google Scholar
  8. Dovesi R, Roetti C, Freyria-Fava C, Prencipe M, Saunders VR (1991) On the elastic properties of lithium, sodium and potassium oxide. An ab initio study. Chemical Physics 156:11–19Google Scholar
  9. Dovesi R, Saunders VR, Roetti C, CRYSTAL 92 User's Manual, Università di Torino, 1992Google Scholar
  10. Finger LW, Hazen RM (1991) Crystal Chemistry of Six-Coordinated Silicon: a Key to Understanding the Earth's Deep Interior. Acta Cryst B47:561–580Google Scholar
  11. Glazer AM (1972) The Classification of Tilted Octahedra in Perovskites. Acta Cryst B28:3384–3392Google Scholar
  12. Hemley RJ, Jackson DM, Gordon RG (1987) Theoretical Study of the Structure, Lattice Dynamics, and Equations of state of Perovskite-type MgSiO3 and CaSiO3. Phys Chem Minerals 14:2–12Google Scholar
  13. Horiuchi H, Ito E, Weidner DJ (1987) Perovskite-type MgSiO3: single crystal X-ray diffraction study. Am Mineral 72:357–360Google Scholar
  14. Ito E, Matsui M (1978) Synthesis and crystal-chemical characterization of MgSiO3 perovskite. Earth Planet Sci Let 38:443–450Google Scholar
  15. Knitte E, Jeanloz R (1987) Synthesis and Equation of State of (Mg, Fe)SiO3 Perovskite over 100 GPa. Science 235:668–670Google Scholar
  16. Kudoh Y, Ito E, Takeda H (1987) Effect of Pressure on the Crystal Structure of Perovskite-type MgSiO3. Phys Chem Minerals 14:350–354Google Scholar
  17. Mao HK, Hemley RJ, Shu J, Chen L, Jephcoat AP, Basset WA (1991) Effect of Pressure, Temperature and Composition on Lattice Parameters and Density of (Fe, Mg)SiO3-Perovskites to 30 GPa. J Geophys Res 96:8069–8079Google Scholar
  18. Mao HK, Shu J, Chen LC, Hemley RJ, Jephcoat AP, Wu Y, Basset WA (1989) The effect of pressure, temperature, and composition on lattice parameters and density of (Fe, Mg)SiO3-perovskite to 30 GPa. Carnegie Inst Wash Year Book 1988–1989:82–89Google Scholar
  19. Mulliken RS (1955) J Chem Phys 23:1833–1841 and 23:2338–2343Google Scholar
  20. O'Keeffe M, Hyde BG, Bovin J-O (1979) Contribution to the Crystal Chemistry of orthorhombic Perovskite: MgSiO3 and NaMgF3. Phys Chem Minerals 4:299–305Google Scholar
  21. Pople JA, Hehre WJ, Radom L, Schleyer PvR Ab initio molecular orbital theory (1986) Chapter 4 Wiley-Interscience PublicationGoogle Scholar
  22. Pisani C, Dovesi R, Roetti C (1988) Lecture Notes in Chemistry, Springer, Heidelberg, Vol 48Google Scholar
  23. Ross NL, Hazen RM (1990) High-Pressure Crystal Chemistry of MgSiO3 Perovskite. Phys Chem Minerals 17:228–237Google Scholar
  24. Salasco L, Dovesi R, Orlando R, Causá M, Saunders VR (1991) A periodic ab-initio extended basis set study of α-Al2O3. Molec Phys 72:267–277Google Scholar
  25. Sasaki S, Prewitt CT, Liebermann RC (1983) The crystal chemistry of CaGeO3 perovskite and the crystal chemistry of GdFeO3-type perovskites. Am Mineral 68:1189–1198Google Scholar
  26. Saunders VR, Freyra-Fava C, Dovesi R, Salasco L, Roetti C (1992) On the electrostatic potential in crystalline system where the charge density is expanded in Gaussian functions. Molecular Physics vol 77 4:629–665Google Scholar
  27. Spackman MA, Hill RJ, Gibbs GV (1987) Exploration of structure, electron density distribution and bonding in Stishovite with Fourier and pseudoatom refinement methods using single-crystal X-ray diffraction data. Phys Chem Minerals 14:139–150Google Scholar
  28. Wang Y, Guyot F, Yaganeh-Haeri A, Liebermann RC (1990) Twinning in MgSiO3 perovskite. Sciences 248:468–471Google Scholar
  29. Wentzcovitch RM, Martins JL, Price GD (1993) Ab Initio molecular dynamics with variable cell shapes: application to MgSiO3. Phys Rev Letters (1993) 70:3947–3950Google Scholar
  30. Yagi T, Mao HT, Bell PM (1978) Structure and Crystal Chemistry of Perovskite-Type MgSiO3. Phys Chem Minerals 3:97–110Google Scholar
  31. Yagi T, Mao HK, Bell PM (1982) Hydrostatic Compression of Perovskite-Type MgSiO3 in Advances in Physical Geochemistry, Saxena SK (ed) Springer, Berlin Heidelberg New York, 317–325Google Scholar
  32. Yeganeh-Haeri A, Weidner DJ, Ito E (1990) Single-crystal elastic moduli of magnesium metasilicate perovskite. In: Navrotsky A, Weidner DJ (eds) Perovskite: a Structure of Great Interest to Geophysics and Materials Science Washington: Am Geophys Union, Geophys Monograph 45:13–23Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Ph. D'Arco
    • 1
  • G. Sandrone
    • 2
  • R. Dovesi
    • 2
  • R. Orlando
    • 2
  • V. R. Saunders
    • 3
  1. 1.Laboratoire de Géologie de l'École Normale Supérieure (URA1316)Paris CédexFrance
  2. 2.Department of Inorganic, Physical and Materials ChemistryUniversity of TorinoTorino
  3. 3.Daresbury Laboratory, Science and Engineering Research CouncilDaresbury, WarringtonUK

Personalised recommendations