Skip to main content
Log in

A Mössbauer and X-ray diffraction study of annites synthesized at different oxygen fugacities and crystal chemical implications

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A refined set of Mössbauer parameters (isomer shifts, quadrupole splittings, Fe2+/Fe3+ ratios) and lattice parameters were obtained from annites synthesized hydrothermally at pressures between 3 and 5 kbars, temperatures ranging from 250 to 780° C and oxygen fugacities controlled by solid state buffers (NNO, QMF, IM, IQF). Mössbauer spectra showed Fe2+ and Fe3+ on both the M1 and the M2 site. A linear relationship between Fe3+ content and oxygen fugacity was observed. Towards low Fe3+ values this linear relationship ends at ≈10% of total iron showing that the Fe3+ content cannot be reduced further even if more reducing conditions are used. This indicates that in annite at least 10% Fe2+ are substituted by Fe3+ in order to match the larger octahedral layer to the smaller tetrahedral layer. IR spectra indicate that formation of octahedral vacancies plays an important role for charge balance through the substitution 3 Fe2+ → 2 Fe3+ + ▪(oct).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldridge LP, Finch J, Gainsford GJ, Patterson KH, Tennant WC (1991) Single crystal Mössbauer studies of IM biotite. Phys Chem Minerals 17:583–590

    Google Scholar 

  • Annersten H, Devavarayanan S, Häggström L, Wäppling R (1971) Mössbauer study of synthetic ferriphlogopite KMg3FeSi3O10(OH)2. Phys Stat Sol(b) 48:K137-K138

    Google Scholar 

  • Annersten H (1974) Mössbauer studies of natural biotites. Am Mineral 59:143–151

    Google Scholar 

  • Appleman DE, Evans HT (1973) Indexing and least-square refinements of powder diffraction data. US Geological Survey, Computer Contributions 20, US National Information Service, Document PB2-16188

  • Bancroft GM, Brown JR (1975) A Mössbauer study of coexisting hornblendes and biotites: quantitative Fe2+/Fe3+ ratios. Am Mineral 60:265–272

    Google Scholar 

  • Berman RG (1988) Internally-consistent thermodynamic data for stoichiometric minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J Petrology 29:445–552

    Google Scholar 

  • Chou I-M (1987) Oxygen buffer and hydrogen sensor techniques at elevated pressures and temperatures. In: Ulmer GC, Barnes HL (ed) Hydrothermal experimental techniques, 61–99, John Wiley and Sons, New York

    Google Scholar 

  • Dachs E (1994) Annite stability revisited: 1. Hydrogensensor data for the reaction annite = sanidine + magnetite + H2. Submitted to Contrib Mineral Petrol

  • Donnay G, Donnay JDH, Takeda H (1964) Trioctahedral onelayer micas. II. Prediction of the structure from composition and cell dimension. Acta Crystallogr 17:1374–1381

    Google Scholar 

  • Dyar MD, Burns R (1986) Mössbauer spectral study of ferruginous one-layer trioctahedral micas. Am Mineral 71:955–965

    Google Scholar 

  • Dyar MD (1987) A review of Mössbauer data of trioctahedral micas. Evidence for tetrahedral Fe3+ and cation ordering. Am Mineral 72:102–112

    Google Scholar 

  • Dyar MD (1990) Mössbauer spectra of biotite from metapelites. Am Mineral 75:656–666

    Google Scholar 

  • Eugster H, Wones DR (1962) Stability relations of the ferruginous biotite, annite. J Petrol 3:82–125

    Google Scholar 

  • Ericsson T, Wäppling R (1976) Texture effects in 3/2–1/2 Mössbauer spectra. J Phys (Paris) 12-C6:719–723

    Google Scholar 

  • Ferrow E, Annersten H (1984) Ferric iron in trioctahedral micas. University of Uppsala, UUDMP Research Report no 39

  • Ferrow E (1987a) Mössbauer and X-ray studies on the oxidation of annite and ferriannite. Phys Chem Minerals 14:270–275

    Google Scholar 

  • Ferrow E (1987b) Mössbauer effect and X-ray diffraction studies of synthetic iron bearing trioctahedral micas. Phys Chem Mineral 14:276–280

    Google Scholar 

  • Grevel KD, Chatterjee ND (1992) A modified Redlich-Kwong equation of state for H2-H2O fluid mixtures at high pressures and at temperatures above 400° C. Eur J Mineral 4:1303–1310

    Google Scholar 

  • Guidotti CV, Dyar MD (1991) Ferric iron in metamorphic biotite and its petrologic and crystallochemical implications. Am Mineral 76(1):161–175

    Google Scholar 

  • Hazen RM, Burnham CW (1973) The crystal structure of one-layer phlogopite and annite. Am Mineral 58:889–900

    Google Scholar 

  • Hazen RM, Wones DR (1972) The effect of cation substitution on the physical properties of trioctahedral micas. Am Mineral 57:103–129

    Google Scholar 

  • Heller-Kellai I, Rozenson I (1981) The use of Mössbauer spectroscopy of iron in clay mineralogy. Phys Chem Minerals 7:223–238

    Google Scholar 

  • Hogg CS, Meads RE (1975) A Mössbauer study of thermal decomposition of biotites. Mineral Mag 40:79–88

    Google Scholar 

  • Holland TJB, Powell R (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O-Na2O-CaO-MgO-MnO-FeO-Fe2O3-Al2O3-TiO2-SiO2-C-H2-O2. J Metamorphic Geology 8:89–124

    Google Scholar 

  • Levillain C, Maurel P, Menil F (1981) Mössbauer studies of synthetic and natural micas on the pholylithonite-siderophyllite join. Phys Chem Minerals 7:71–79

    Google Scholar 

  • Luth WC, Ingamels O (1965) Gel preperation of starting materials for hydrothermal experimentation. Am Mineral 50:255–258

    Google Scholar 

  • Luth WC, Turttle OF (1963) Externally heated cold-seal pressure vessels for use up to 10000 bars and 750° C. Am Mineral 48:1401–1403

    Google Scholar 

  • O'Neill HStC (1987a) Quartz-fayalite-iron and quartz-fayalite-magnetic equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4). Am Mineral 72:67–75

    Google Scholar 

  • O'Neill HStC (1987b) Free energies of formation of NiO, CoO, Ni2SiO4 and Co2SiO4. Am Mineral 72:280–291

    Google Scholar 

  • Otha T, Taketa H, Takeuchi Y (1982) Mica polytism: similarities in the crystal structure of coexisting 1M and 2M1 oxybiotite. Am Mineral 67:298–310

    Google Scholar 

  • Rancourt GD, Dang M-Z, Lalonde AE (1992) Mössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas. Am Mineral 77(1):34–43

    Google Scholar 

  • Radoslovich EW, Norrish K (1962) The cell dimensions and symmetry of layer silicates I. Some structural considerations. Am Mineral 47:599–615

    Google Scholar 

  • Rutherford MJ (1973) The phase relations of aluminous iron biotites in the system KAlSi3O8-KAlSi3O4-Al2O3-Fe-O-H. J Petrology 14:159–180

    Google Scholar 

  • Sanz J, de la Calle C, Stone WE (1984) NMR applied to minerals V: the location of vancancies in the octahedral sheet of aluminous biotites. Phys Chem Mineral 11:235–240

    Google Scholar 

  • Shannon RD, Prewitt CT (1969) Effective ionic radii in oxides and fiuorides. Acta Crystallogr B25:925–946

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767

    Google Scholar 

  • Takeda H, Ross M (1975) Mica polytypism Dissimilarities in the crystal structure of coexisting 1 M and 2M1 biotite. Am Mineral 60:1030–1040

    Google Scholar 

  • Vedders W, Wilkins RWT (1969) Dehydroxylation and rehydroxylation, oxidation and reduction of micas. Am Mineral 54:482–509

    Google Scholar 

  • Wones DR (1963) Physical properties of synthetic biotites on the join phlogopite-annite. Am Mineral 48:1300–1331

    Google Scholar 

  • Wones DR, Eugster HP (1965) Stability of biotite: experimental theory and application. Am Mineral 50:1228–1272

    Google Scholar 

  • Wilkins RWT (1967) The hydroxyl stretching region of the spectrum of biotite mica. Mineral Mag 36:325–333

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redhammer, G.J., Beran, A., Dachs, E. et al. A Mössbauer and X-ray diffraction study of annites synthesized at different oxygen fugacities and crystal chemical implications. Phys Chem Minerals 20, 382–394 (1993). https://doi.org/10.1007/BF00203107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00203107

Keywords

Navigation