Physics and Chemistry of Minerals

, Volume 22, Issue 1, pp 61–65 | Cite as

On the thermal expansion of β-cristobalite

  • I. P. Swainson
  • M. T. Dove
Article

Abstract

We have measured the temperature dependence of the cell parameter of cubic β-cristobalite up to 1300° C by high-precision X-ray powder diffraction. The thermal expansion coefficient decreases on heating, until above 1000° C the cell parameter is virtually constant in value. We discuss this change in the thermal expansion with reference to the behaviour of low-frequency rigid unit modes and fluctuations associated with the α-β phase transition.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aumento F (1966) Stability, lattice parameters, and thermal expansion of β-cristobalite. Am Mineral 51:1167–1176Google Scholar
  2. Büssem W, Bluth M, Grochtmann G (1935) Röntgenographische Ausdehnungsmessungen kristallen Massen I. Ber Dsch Keram Ges 16:381–392Google Scholar
  3. Dove MT, Giddy AP, Heine V (1992) On the application of mean-field and Landau theory to displacive phase transitions. Ferroelectr 136:33–49Google Scholar
  4. Dove MT, Giddy AP, Heine V (1993) Rigid unit mode model of displacive phase transitions in framework silicates. Trans Am Crystallogr Assoc 27:65–74Google Scholar
  5. Downs RT, Gibbs GV, Bartelmehs KL, Boisen Jr. MB (1992) Variations of bond lengths and volumes of silicate tetrahedra with temperature. Am Mineral 77:751–757Google Scholar
  6. Giddy AP, Dove MT, Pawley GS, Heine V (1993) The determination of rigid unit modes as potential soft modes for displacive phase transitions in framework crystal structures. Acta Crystallogr A 49:697–703Google Scholar
  7. Hua GL, Welberry TR, Withers RL, Thompson JG (1988) An electron diffraction and lattice-dynamical study of the diffuse scattering in β-cristobalite, SiO2. J Appl Crystallogr 21:458–465Google Scholar
  8. Kihara K (1990) An X-ray study of the temperature dependence of the quartz structure. Eur J Min 2:63–77Google Scholar
  9. Phillips BL, Thompson JG, Xiao Y, Kirkpatrick RJ (1993) Constraints on the structure and dynamics of the β-cristobalite polymorphs of SiO2 and AlPO4 from 31P, 27Al and 29Si NMR spectroscopy to 770 K. Phys Chem Minerals 20:341–352Google Scholar
  10. Rechav B, Yacoby Y, Stern EA, Rehr JJ, Newville M (1994) Local structural distortions below and above the antiferrodistortive phase transition. Phys Rev Lett 72:1352–1355Google Scholar
  11. Salje EKH, Ridgewell A, Güttler B, Wruck B, Dove MT, Dolino G (1992) On the displacive character of the phase transition in quartz: a hard mode spectroscopic study. J Phys: Condensed Matter Physics 4:571–577Google Scholar
  12. Schmahl WW, Swainson IP, Dove MT, Graeme-Barber A (1992) Landau free energy and order parameter behaviour of the α/β phase transition in cristobalite. Z Kristallogr 201:125–145Google Scholar
  13. Sollich P, Heine V, Dove MT (1994) The Ginzburg interval in soft mode phase transitions: Consequences of the Rigid Unit Mode picture. J Phys: Condensed Matter Physics 6:3171–3196Google Scholar
  14. Sosman RB (1965) The phases of silica. Rutgers University PressGoogle Scholar
  15. Swainson IP, Dove MT (1993) Low-frequency floppy modes in β-cristobalite. Phys Rev Lett 71:193–196Google Scholar
  16. Wright AF, Leadbetter AJ (1975) The structure of the β-cristobalite phases of SiO2 and AlPO4. Philos Mag 31:1391–1401Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • I. P. Swainson
    • 1
    • 2
  • M. T. Dove
    • 1
    • 2
  1. 1.Department of Earth SciencesUniversity of CambridgeCambridgeUK
  2. 2.Neutron and Condensed Matter Science, Chalk River Laboratories, AECL ResearchChalk RiverCanada

Personalised recommendations