Skip to main content
Log in

A study of bernalite, Fe(OH)3, using Mössbauer spectroscopy, optical spectroscopy and transmission electron microscopy

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

To study the crystal chemistry of bernalite, Fe(OH)3, and the nature of the octahedral Fe3+ environment, Mössbauer spectra were recorded from 80 to 350 K, optical spectra were recorded at room temperature and a sample was studied using transmission electron microscopy. The Mössbauer spectrum of bernalite consists of a single six-line magnetic spectrum at 80 K. A broadened six-line magnetic spectrum with significantly less intensity is observed at higher temperatures, and is attributed to a small fraction of bernalite occurring as small particles. The variation of hyperfine magnetic field data for bulk bernalite with temperature is well described by the Weiss molecular field model with parameters of H 0 = 55.7±0.3 T and T N = 427±5K. The centre shift data were fitted to the Debye model with parameters δ0=0.482±0.005 mm/s (relative to α-Fe) and ΘM=492±30 K. The quadrupole shift is near zero at 300 K, and does not vary significantly with temperature. Absorption spectra in the visible and near infrared range show three crystal field bands of Fe3+ at 11 300, 16000 and 23 200 cm-1, giving a crystal field splitting of 14 570 cm-1 and Racah parameters of B=629 cm-1 and C=3381 cm-1. Infrared reflection spectra show two distinct OH-stretching frequencies, which could correspond to two structurally different types of OH groups. A band was also observed at 2250 cm-1, suggesting the presence of molecular CO2 in the large cation site. Analytical transmission electron microscopy indicates that Si occurs within the bernalite structure as well as along domain boundaries. Electron diffraction and imaging show that bernalite is polysynthetically twinned along {100} planes with twin domains ranging from 3 to 20 nm in thickness. Results are discussed with respect to the nature of the octahedral Fe3+ site, and compared with values for other iron oxides and hydroxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aines RD, Rossman GR (1984) The high temperature behavior of water and carbon dioxide in cordierite and beryl. Am Mineral 69:319–327

    Google Scholar 

  • Au-Yeung SCF, Eaton DR, Birchall T, Denes G, Greedan JE, Hallet C, Reubenbauer K (1985) The preparation and characterization of iron trihydroxide, Fe(OH)3. Can J Chem 63:3378–3385

    Google Scholar 

  • Baronnet A (1992) Polytypism and stacking disorder. In: Buseck PR (ed) Minerals and reactions at the atomic scale: Transmission electron microscopy, Reviews in Mineralogy, Vol 27. Mineralogical Society of America, Washington DC, pp 231–282

    Google Scholar 

  • Birch WD, Pring A, Reller A, Schmalle H (1992) Bernalite: a new ferric hydroxide with perovskite structure. Naturwiss 79:509–511

    Google Scholar 

  • Birch WD, Pring A, Reller A, Schmalle H (1993) Bernalite, Fe(OH)3, a new mineral from Broken Hill, New South Wales: Description and structure. Am Mineral 78:827–834

    Google Scholar 

  • Blake RL, Hessevick RE, Zoltai T, Finger LW (1966) Refinement of the hematite structure. Am Mineral 51:123–129

    Google Scholar 

  • Brookins DG (1988) Eh-pH diagrams for geochemistry. Springer, Berlin

    Google Scholar 

  • Burns RG (1993) Mineralogical applications of crystal field theory, 2nd edition. Cambridge University Press, Cambridge

    Google Scholar 

  • Carpenter AB (1963) Oriented overgrowths of thaumasite on ettringite. Am Mineral 48:1394–1396

    Google Scholar 

  • Coey JMD, Readman PW (1973) Characterization and magnetic properties of natural ferric gel. Earth Planet Sci Lett 21:45–51

    Google Scholar 

  • De Grave E, Van Alboom A (1991) Evaluation of ferrous and ferric Mössbauer fractions. Phys Chem Minerals 18:337–342

    Google Scholar 

  • De Grave E, Vandenberge RE (1986) 57Fe Mössbauer effect of well-crystallised goethite (α-FeOOH). Hyper Inter 28:643–646

    Google Scholar 

  • De Grave E, Verbleek AE, Chambaere DG (1985) Influence of small aluminum substitutions on the hematite lattice. Phys Lett A107:181–184

    Google Scholar 

  • Effenberger H, Kirfel A, Will G, Zobetz E (1983) A further refinement of the crystal structure of thaumasite, Ca3Si(OH)6CO3SO4·12H2O. N Jb Miner MH 60–68

  • Ewing FJ (1935) The crystal structure of lepidocrocite. J Chem Phys 3:420–424

    Google Scholar 

  • Hawthorne FC (1988) Mössbauer Spectroscopy. In: Hawthorne FC (ed) Spectroscopic methods in mineralogy and geology, Reviews in Mineralogy, Vol 18. Mineralogical Society of America, Washington DC, pp 255–340

    Google Scholar 

  • Heberle J (1971) The Debye integrals, the thermal shift and the Mössbauer fraction. In: Gruverman IJ (ed) Mössbauer Effect Methodology, Vol 7. Plenum Press, New York, pp 299–308

    Google Scholar 

  • Hu M, Wenk H-R, Sinitsyna D (1992) Microstructures in natural perovskites. Am Mineral 77:359–373

    Google Scholar 

  • Johnson CE (1969) Antiferromagnetism of γ-FeOOH: A Mössbauer effect study. J Phys C Solid State Phys 2:1996–2002

    Google Scholar 

  • Kolk B (1984) Studies of dynamical properties of solids with the Mössbauer effect. In: Horton GK, Maradudin AA (eds) Dynamical Properties of Solids, Vol 5. North Holland, Amsterdam, pp 3–328

    Google Scholar 

  • Kündig W, Bömmel H, Constabaris G, Lindquist RH (1966) Some properties of supported small α-Fe2O3 particles determined with the Mössbauer effect. Phys Rev 142:327–333

    Google Scholar 

  • Mao HK, Bell PM (1974) Crystal-field effects of ferric iron in goethite and lepidocrocite: band assignment and geochemical applications at high pressure. Ann Rept Geophys Lab 73:502–507

    Google Scholar 

  • McCammon CA, Rubie DC, Ross II CR, Seifert F, O'Neill HSC (1992) Mössbauer spectra of 57Fe0.05Mg0.95SiO3 perovskite at 80 and 298 K. Am Mineral 77:894–897

    Google Scholar 

  • McCammon CA, De Grave E, Pring A (1995) The magnetic structure of bernalite, Fe(OH)3. J Magn Magn Mater, in press

  • Morrish AH (1965) The physical properties of magnetism. John Wiley & Sons, Inc. New York, pp 262–264

    Google Scholar 

  • Mørup S, Topsøe H (1976) Mössbauer studies of thermal excitations in magnetically ordered crystals. Appl Phys 11:63–66

    Google Scholar 

  • Mössbauer RL, Wiedemann WH (1960) Kernresonanzabsorption nicht Doppier-verbreiterter Gammastrahlung in Re187. Z Phys 159:33–48

    Google Scholar 

  • Murad E, Schwertmann U (1983) The influence of aluminium substitution and crystallinity on the Mössbauer spectra of goethite. Clay Min 18:301–312

    Google Scholar 

  • Nakamoto K, Magoshes M, Rundle RE (1955) Stretching frequency as a function of distances in hydrogen bonds. J Am Chem Soc 77:6480–6488

    Google Scholar 

  • Néel L (1949) Théorie du trainage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann Geophys 5:99–136

    Google Scholar 

  • O'Keeffe M, Hyde BG (1981) The role of nonbonded forces in crystals. In: O'Keeffe M, Navrotsky A (eds) Structure and bonding in crystals, Vol 1. Academic Press, New York, pp 227–254

    Google Scholar 

  • Pound RV, Rebka GA Jr (1960) Variation with temperature of the energy of recoil-free gamma rays from solids. Phys Rev Lett 4:274–277

    Google Scholar 

  • Rossiter MJ, Hodgson J (1965) A Mössbauer study of ferric oxyhydroxide. J Inorg Nucl Chem 27:63–71

    Google Scholar 

  • Sasaki S, Prewitt CT, Liebermann RC (1983) The crystal structure of CaGeO3 and the crystal chemistry of the GdFeO3 perovskites. Am Mineral 68:1189–1198

    Google Scholar 

  • Sherman DM (1975) SCF--SW MO study of Fe-O and Fe-OH chemical bonds; applications to the Mössbauer spectra and magnetochemistry of hydroxyl-bearing Fe3+ oxides and silicates. Phys Chem Minerals 12:311–314

    Google Scholar 

  • Sherman DM, Waite TD (1985) Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. Am Mineral 70:1262–1269

    Google Scholar 

  • Shinjo T (1966) Mössbauer effect in antiferromagnetic fine particles. J Phys Soc Jap 21:917–922

    Google Scholar 

  • Stolper E, Fine G, Johnson T, Newman S (1987) Solubility of carbon dioxide in albitic melt. Am Mineral 72:1071–1085

    Google Scholar 

  • Szytuła A, Burewicz A, Dimitrijewić Ž, Krasnicki S, Rżany H, Todorović J, Wanic A, Wolski W (1968) Neutron diffraction studies of α-FeOOH. Phys Stat Sol 26:429–434

    Google Scholar 

  • Tanabe Y, Sugano S (1954) On the absorption spectra of complex ions. J Phys Soc Jap 9:753–779

    Google Scholar 

  • Vandenberghe RE, De Grave E (1989) Mössbauer effect studies of oxidic spinels. In: Long GJ, Grandjean D (eds) Mössbauer spectroscopy applied to inorganic chemistry, Vol 3. Plenum Press, New York, pp 59–182

    Google Scholar 

  • van der Giessen AA (1968) The structure of iron (III) oxide-hydrate gels. J Inorg Nucl Chem 28:2155–2159

    Google Scholar 

  • van der Woude F (1966) Mössbauer effect in α-Fe2O3. Phys Stat Sol 17:417–432

    Google Scholar 

  • Veblen DR, Buseck PR (1979) Chain-width order and disorder in biopyriboles. Am Mineral 64:687–700

    Google Scholar 

  • Verbeeck AE, De Grave E, Vandenberghe RE (1986) The effect of the particle morphology on the Mössbauer effect in αFe2O3. Hyper Inter 28:639–642

    Google Scholar 

  • Weiss P (1906) La variation du ferromagnétisme avec la température. Comptes Rendus des Séances de L'Académie des Sciences 143:1136–1139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCammon, C.A., Pring, A., Keppler, H. et al. A study of bernalite, Fe(OH)3, using Mössbauer spectroscopy, optical spectroscopy and transmission electron microscopy. Phys Chem Minerals 22, 11–20 (1995). https://doi.org/10.1007/BF00202676

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202676

Keywords

Navigation