Planta

, Volume 195, Issue 3, pp 456–463 | Cite as

Thioredoxin h is one of the major proteins in rice phloem sap

  • Yutaka Ishiwatari
  • Chikako Honda
  • Ichiro Kawashima
  • Shin-ichi Nakamura
  • Hisashi Hirano
  • Satoshi Mori
  • Toru Fujiwara
  • Hiroaki Hayashi
  • Mitsuo Chino
Article

Abstract

Sieve tubes play important roles in the transfer of nutrients as well as signals. Hundreds of proteins were found in pure phloem sap collected from rice (Oryza sativa L. cv. Kantou) plants through the cut ends of insect stylets. These proteins may be involved in nutrient transfer and signal transduction. To characterize the nature of these proteins, the partial amino-acid sequence of a 13kDa protein, named RPP13-1, that was abundant in the pure phloem sap was determined. A cDNA clone of 687 bp, containing an open reading frame of 122 amino acids, was isolated using corresponding oligonucleotides as a probe. The deduced amino-acid sequence was very similar to that of the ubiquitous thiol redox protein, thioredoxin. The consensus sequences of thioredoxins are highly conserved. No putative signal peptide was identified. Antiserum against wheat thioredoxin h cross-reacted with RPP13-1 in the phloem sap of rice plants. RPP131 produced in Escherichia coli was reactive to antiserum against wheat thioredoxin h. Both E. coli-produced RPP13-1 and the phloem sap proteins catalyzed the reduction of the disulfide bonds of insulin in the presence of dithiothreitol. These results indicate that an active thioredoxin is a major protein translocating in rice sieve tubes.

Keywords

Oryza (phloem proteins) Phloem sap protein Sieve tube Thioredoxin 

Abbreviations

2D

two dimensional

pI

isoelectric point;

RPP13

13-kDa rice phloem sap protein

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, A.K. (1979) A lectin from the exudate of the fruit of the vegetable marrow (Cucurbita pepo) that has a specificity for a β-1,4-linked N-acetylglucosamine oligosaccharide. Biochem. J. 183, 133–137Google Scholar
  2. Bostwick, D.E., Dannenhoffer, J.M., Skaggs, M.I., Lister, R.M., Larkins, B.A., Thompson, G.A. (1992) Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell 4, 1539–1548Google Scholar
  3. Brugidou, C., Marty, I., Chartier, Y., Meyer, Y. (1993) The Nicotiana tabacum genome encodes two cytoplasmic thioredoxin genes which are differently expressed. Mol. Gen. Genet. 238, 285–293Google Scholar
  4. Cleveland, D.W., Fischer, S.G., Kirschner, M.W., Laemmli, U.K. (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J. Biol. Chem. 252, 1102–1106Google Scholar
  5. Cronshaw, J. (1981) Phloem structure and function. Annu. Rev. Plant Physiol. 32, 465–484Google Scholar
  6. Cronshaw, J., Sabnis, D.D. (1990) Phloem proteins. In: Sieve elements, pp257–283, Behnke, H.-D., Sjolund, R.D., eds. Springer, BerlinGoogle Scholar
  7. Decottignies, P., Schmitter, J.M., Dutka, S., Jacquot, J.P., Miginiac Maslow, M. (1991) Characterization and primary structure of a second thioredoxin from the green alga, Chlamydommonas reinhardtii. Eur. J. Biochem. 198, 505–512Google Scholar
  8. Doyle, J.J., Doyle, J.L. (1990) Isolation of plant DNA from fresh tissue. Focus, 12, 13–15Google Scholar
  9. Eklund, H., Gleason, F.K., Holmgren, A. (1991) Structural and functional relations among thioredoxins of different species. Proteins 11, 13–28Google Scholar
  10. Eschrich, W., Heyser, W. (1975) Biochemistry of phloem constituents. In: Encyclopedia of plant physiology, N.S. vol.1: Transport in plants, 1. Phloem transport, pp. 101–136, Zimmermann, M.H., Milburn, J.A., eds. Springer, BerlinGoogle Scholar
  11. Fernando, M.R., Nanri, H., Yoshitake, S., Nagata-Kuno, K., Minakami, S. (1992) Thioredoxin regenerates proteins inactivated by oxidative stress in endothelial cells. Eur. J. Biochem. 209, 917–922Google Scholar
  12. Fisher, D.B., Wu, Y, Ku, M.S.B. (1992) Turnover of soluble proteins in the wheat sieve tube. Plant Physiol. 100, 1433–1441Google Scholar
  13. Florencio, F.J., Yee, B.C., Johnson, T.C., Buchanan, B.B. (1988) An NADP/thioredoxin system in leaves: purification and characterization of NADP-thioredoxin reductase and thioredoxin h from spinach. Arch. Biochem. Biophys. 266, 496–507Google Scholar
  14. Frommer, W.B., Hummel, S., Rosemary, J.W. (1993) Expression cloning in yeast of a cDNA encoding a broad specificity aminoacid permease from Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA. 90, 5944–5948Google Scholar
  15. Fujiwara, T., Giesman-Cookmeyer, D., Ding, B., Lommel, S.A., Lucas, W.J. (1993) Cell-to-cell trafficking of macromolecules through plasmodesmata potentiated by the red clover necrotic virus movement protein. Plant Cell 5, 1783–1794Google Scholar
  16. Gan, Z.R. (1991) Yeast thioredoxin genes. J. Biol. Chem. 266, 1692–1696Google Scholar
  17. Goto, Y., Noda, Y., Narimoto, K., Umaoka, Y, Mori, T. (1992) Oxidative stress on mouse embryo development in vitro. Free Radical Biol. Med. 13, 47–53Google Scholar
  18. Grippo, J.F., Holmgren, A., Pratt, W.B. (1985) Proof that the endogenous, heat-stable glucocorticoid receptor-activating factor is thioredoxin. J. Biol. Chem. 260, 93–97Google Scholar
  19. hayashi, H., Chino, M. (1985) Nitrate and other anions in the rice phloem sap. Plant Cell Physiol. 26, 1319–1327Google Scholar
  20. Hayashi, H., Chino, M. (1990) Chemical composition of phloem sap from the uppermost internode of the rice plant. Plant Cell Physiol. 31, 247–251Google Scholar
  21. Hayashi, T, Ueno, Y, Okamoto, T. (1993) Oxidoreductive regulation of nuclear factor kB. J. Biol. Chem. 268, 11380–11388Google Scholar
  22. Hirano, H., Watanabe, T. (1990) Microsequencing of proteins electrotransferred onto immobilizing matrices from polyacrylamide gel electrophoresis: application to an insoluble protein. Electrophoresis 11, 573–580Google Scholar
  23. Holmgren, A. (1979) Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide. J. Biol. Chem. 254, 9627–9632Google Scholar
  24. Holmgren, A. (1985) Thioredoxin. Annu. Rev. Biochem. 54, 237–271Google Scholar
  25. Hsu, L.C., Chiou, T.J., Chen, L., Bush, D.R. (1993) Cloning a plant amino acid transporter by functional complementation of a yeast amino acid transport mutant. Proc. Natl. Acad. Sci. USA 90, 7441–7445Google Scholar
  26. Johnson, T.C., Cao, R.Q., Kung, J.E., Buchanan, B.B. (1987) Thioredoxin and NADP-thioredoxin reductase from cultured carrot cells. Planta 171, 321–331Google Scholar
  27. Kamo, M., Tsugita, A., Wiessner, C., Wedel, N., Bartling, D., Herrmann, R.G., Aguilar, F., Gardet-Salvi, L., Schuermann, P. (1989) Primary structure of spinach chloroplast thioredoxin F: protein sequencing and analysis of complete cDNA clones for spinach chloroplast. Eur. J. Biochem. 154, 197–203Google Scholar
  28. Kawabe, S., Fukumorita, T, Chino, M. (1980) Collection of rice phloem sap from stylets of homopterous insects severed by YAG laser. Plant Cell Physiol. 21, 1319–1327Google Scholar
  29. Maeda, K., Tsugita, A., Dalzoppo, D., Vilbois, F., Schuermann, P. (1986) Further characterization and amino acid sequence of mtype thioredoxins from spinach chloroplasts. Eur. J. Biochem. 154, 197–203Google Scholar
  30. Marcus, F., Chamberlain, S.H., Chu, C., Masiarz, F.R., Shin, S., Yee, B.C., Buchanan, B.B. (1991) Plant thioredoxin-h — an animal-like thioredoxin occurring in multiple cell compartments. Arch. Biochem. Biophys. 287, 195–198Google Scholar
  31. Marty, I., Brugidou, C., Chartier, Y, Meyer, Y. (1993) Growth-related gene expression in Nicotiana tabacum mesophyll protoplasts. Plant J. 4, 265–278Google Scholar
  32. Marty, I., Meyer, Y. (1991) Nucleotide sequence of a cDNA encoding a tobacco thioredoxin. Plant Mol. Biol. 17, 143–147Google Scholar
  33. Nakamura, S., Hayashi, H., Mori, S., Chino, M. (1993) Protein phosphorylation in the sieve tubes of rice plants. Plant Cell Physiol. 34, 927–933Google Scholar
  34. Noueiry, A.O., Lucas, W.J., Gilbertson, R.L. (1994) Two proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76, 925–932Google Scholar
  35. Palmiter, R.D. (1974) Magnesium precipitation of ribonucleoprotein complexes. Expedient techniques for the isolation of undegraded polysomes and messenger ribonucleic acid. Biochemistry 13, 3606–3615Google Scholar
  36. Parthasarathy, M.V. (1975) Sieve element structure. In: Encyclopedia of plant physiology, N.S. vol 1: Transport in plants, 1. Phloem transport, pp. 3–38, Zimmermann, M.H., Milburn, J.A., eds. Springer, BerlinGoogle Scholar
  37. Pigiet, V.P., Schuster, B.J. (1986) Thioredoxin-catalyzed refolding of disulfide-containing proteins. Proc. Natl. Acad. Sci. USA 83, 7643–7647Google Scholar
  38. Raven, J.A. (1991) Long-term functioning of enucleate sieve elements: possible mechanisms of damage avoidance and damage repair. Plant Cell Environ. 14, 139–146Google Scholar
  39. Read, S.M., Northcote, D.H. (1983) Subunit structure and interactions of the phloem proteins of Cucurbita maxima (pumpkin). Eur. J. Biochem. 134, 561–569Google Scholar
  40. Riesmeier, J.W., Willmitzer, L., Fromer, W.B. (1992) Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 11, 4705–4713Google Scholar
  41. Rosemary, J.W., Willmitzer, L., Frommer, W.B. (1992) Isolation and characterization of a sucrose carrier cDNA from spinach by functional expression in yeast. EMBO J. 11, 4705–4713Google Scholar
  42. Rivera-Madrid, R., Marinho, P., Brugidou, C., Chartier, Y., Meyer, Y. (1993) Nucleotide sequence of a cDNA clone encoding an Arabidopsis thaliana thioredoxin h. Plant Physiol. 102, 327–328Google Scholar
  43. Sabnis, D.D., Hart, J.W. (1976) A comparative analysis of phloem exudate proteins from Cucurbita melo, Cucurbita sativus and Cucurbita maxima by polyacrylamide gel electrophoresis and isoelectric focussing. Planta 130, 211–218Google Scholar
  44. Sambrook, J., Fritsch, E.F., Maniatis, T. (1989) Molecular cloning: A laboratory manual. Cold Spring Harbor Press, Cold Spring HarborGoogle Scholar
  45. Sanger, F., Nicklen, S., Coulson, A.R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467Google Scholar
  46. Sloan, R.T., Sabnis, D.D., Hart, J.W. (1978) The heterogeneity of phloem exudate from different plants: a comparative survey of ten plants using polyacrylamide gel electrophoresis. Planta 132, 97–102Google Scholar
  47. Tagaya, Y., Maeda, Y, Mitsui, A., Kondo, N., Matsui, H., Hamuro, J., Brown, N., Arai, K., Yokota, T, Wakasugi, H., Yodoi, J. (1989) ATL-derived factor (ADF), an IL-2 receptor/Tac inducer homologous to thioredoxin; possible involvement of dithiol-reduction in the IL-2 receptor induction. EMBO J. 8, 757–764Google Scholar
  48. Towbin, H., Staehelin, T., Gordon, J. (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76, 4350–4354Google Scholar
  49. Wedel, N., Clausmeyer, S. Herrmann, R. G., Gardet-Salvi, L., Schurmann, P. (1992) Nucleotide sequence of cDNAs encoding the entire precursor polypeptide for thioredoxin m from spinach chloroplasts. Plant Mol. Biol. 18, 527–533Google Scholar
  50. Wollman, E.E., d'Auriol, L., Rimsky, L., Shaw, A., Jacquot, J.P., Wingfield, P., Graber, P., Dessarps, F., Robin, P., Galibert, F., Bertoglio, J., Fradelizi, D. (1988) Cloning and expression of a cDNA for human thioredoxin. J. Biol. Chem. 263, 15506–15512Google Scholar
  51. Ziegler, H. (1975) Nature of transported substances. In: Encyclopedia of plant physiology, N.S. vol.1: Transport in plants, 1. Phloem transport, pp. 59–100, Zimmermann, M.H., Milburn, J.A., eds. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Yutaka Ishiwatari
    • 1
  • Chikako Honda
    • 1
  • Ichiro Kawashima
    • 1
  • Shin-ichi Nakamura
    • 1
  • Hisashi Hirano
    • 2
  • Satoshi Mori
    • 1
  • Toru Fujiwara
    • 1
  • Hiroaki Hayashi
    • 1
  • Mitsuo Chino
    • 1
  1. 1.Department of Applied Biological Chemistry, Division of Agriculture and Agricultural Life SciencesUniversity of TokyoTokyoJapan
  2. 2.Department of Molecular BiologyNational Institute of Agrobiological ResourcesIbarakiJapan

Personalised recommendations