Skip to main content
Log in

In-situ high-temperature Raman spectroscopic studies of aluminosilicate liquids

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We have measured in-situ Raman spectra of aluminosilicate glasses and liquids with albite (NaAlSi3 O8) and anorthite (CaAl2Si2O8) compositions at high temperatures, through their glass transition range up to 1700 and 2000 K, respectively. For these experiments, we have used a wire-loop heating device coupled with micro-Raman spectroscopy, in order to achieve effective spatial filtering of the extraneous thermal radiation. A major concern in this work is the development of methodology for reliably extracting the first and second order contributions to the Raman scattering spectra of aluminosilicate glasses and liquids from the high temperature experimental data, and analyzing these in terms of vibrational (anharmonic) and configurational changes. The changes in the first order Raman spectra with temperature are subtle. The principal low frequency band remains nearly constant with increasing temperature, indicating little change in the T-O-T angle, and that the angle bending vibration is quite harmonic. This is in contrast to vitreous SiO2, studied previously. Above Tg, intensity changes in the 560–590 cm−1 regions of both sets of spectra indicate configurational changes in the supercooled liquids, associated with formation of additional Al-O-Al linkages, or 3-membered (Al, Si)-containing rings. Additional intensity at 800 cm−1 reflects also some rearrangement of the Si-O-Al network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe T, Tsukamuto K, Sunagawa I (1991) Nucleation, growth and stability of CaAl2Si2O8 polymorphs. Phys Chem Minerals 17:473–484

    Google Scholar 

  • Angell CA (1991) Relaxation in liquids, polymers and plastic crystals — strong/fragile patterns and problems. J Non-Cryst Solids 131:13–31

    Google Scholar 

  • Badets MC, Coté B, Simon P, Coutures JP (1990) E.P.R. study of the oxygen effect on CaO Al2O3 SiO2 glasses elaborated under contactless conditions. Ann Chim Fr 15:455–461

    Google Scholar 

  • Cranmer D, Uhlmann DR (1981) Viscosities in the system albiteanorthite. J Geophys Res 78:4920–4923

    Google Scholar 

  • Daniel I, Gillet Ph, McMillan PF, Richet P (1995) An in-situ hightemperature study of stable and metastable CaAl2Si2O8 polymorphs. Mineral Mag 59:25–34

    Google Scholar 

  • De Jong BHWS, Brown Jr GE (1980) Polymerization of silicate and aluminate tetrahedra in glasses, melts, and aqueous solutions — I. Electronic structure of H6Si2 7, H6AlSiO 1−7 , and H6Al2 7/20 .

  • Dingwell DB, Webb SL (1990) Relaxation in silicate melts. Eur J Mineral 2:427–449

    Google Scholar 

  • Farnan I, Stebbins JF (1990) High-temperature 29Si NMR investigation of solid and molten silicates. J Am Chem Soc 112:32–39

    Google Scholar 

  • Farnan I, Stebbins JF (1994) The nature of the glass transition in a silica-rich oxide melt. Science 265:1206–1209

    Google Scholar 

  • Galeener FL, Geissberger AE (1983) Vibrational dynamics in 30Si-substituted vitreous SiO2. Phys Rev B 27:6199–6204

    Google Scholar 

  • Galeener FL, Mikkelsen JC (1981) Vibrational dynamics in 18O-substituted vitreous SiO2. Phys Rev B 23:5527–5530

    Google Scholar 

  • Ganguly AK, Berman JL (1967) Theory of lattice Raman scattering in insulators. Phys Rev B 162:806–816

    Google Scholar 

  • Geissberger AE, Galeener FL (1983) Raman studies of vitreous SiO2 versus fictive temperature. Phys Rev B 28:3266–3271

    Google Scholar 

  • Griscom DL (1980) Electron spin resonance in glasses. J Non-Cryst Solids 40:211–272

    Google Scholar 

  • Griscom DL (1985) Defect structure of glasses. Some outstanding questions in regard to vitreous silica. J Non-Cryst Solids 73: 51–77

    Google Scholar 

  • Kirkpatrick RJ (1988) MAS NMR spectroscopy of minerals and glasses. In: Hawthorne FC (ed) Spectroscopic Methods in Mineralogy and Geochemistry. Rev Mineral 18:341–403

  • Kubicki JD, Sykes D (1993) Molecular orbital calculations of vibrations in three-membered aluminosilicates rings. Phys Chem Minerals 19:381–391

    Google Scholar 

  • Long DA (1977) Raman spectroscopy. McGraw Hill, New York

    Google Scholar 

  • Matson DW, Sharma SK, Philpotts JA (1983) The structure of high-silica alkali silicate glasses — a Raman spectroscopic investigation. J Non-Cryst Solids 58:323–352

    Google Scholar 

  • Matson DW, Sharma SK, Philpotts JA (1986) Raman spectra of some tectosilicates and glasses along the orthoclase-anorthite and nepheline-anorthite joins. Am Mineral 71:694–704

    Google Scholar 

  • McMillan PF (1984) Structural studies of silicate glasses and melts — applications and limitations of Raman spectroscopy. Am Mineral 69:622–644

    Google Scholar 

  • McMillan PF, Kirkpatrick RJ (1992) Al coordination in magnesium aluminosilicate glasses. Am Mineral 77:898–900

    Google Scholar 

  • McMillan PF, Piriou B (1983) Raman spectroscopy of calcium aluminate glasses and crystals. J Non-Cryst Solids 55:221–242

    Google Scholar 

  • McMillan PF, Piriou B, Navrotsky A (1982) A Raman spectroscopic study of glasses along the joins silica-calcium aluminate, silica-sodium aluminate, and silica-potassium aluminate. Geochim Cosmochim Acta 46:2021–2037

    Google Scholar 

  • McMillan PF, Wolf GH, Poe BT (1992) Vibrational spectroscopy of silicate liquids and glasses. Chem Geol 96:351–366

    Google Scholar 

  • McMillan PF, Poe BT, Gillet Ph, Reynard B (1994) A study of SiO2 glass and supercooled liquid to 1950 K via high-temperature raman spectroscopy. Geochim Cosmochim Acta 58:3653–3664

    Google Scholar 

  • Mysen BO (1988) Structure and Properties of Silicate Melts. Elsevier, Amsterdam

    Google Scholar 

  • Mysen BO (1990) Effect of pressure, temperature, and bulk composition on the structure and species distribution in depolymerized alkali aluminosilicate melts and quenched melts. J Geophys Res B 95:15733–15744

    Google Scholar 

  • Mysen BO, Frantz JD (1992) Raman spectroscopy of silicate melts at magmatic temperatures: Na2O-SiO2, K2O-SiO2 and Li2O-SiO2 binary compositions in the temperature range 25–1475° C. Chem Geol 96:321–332

    Google Scholar 

  • Mysen BO, Frantz JD (1993) Structure and properties of alkali silicate melts at magmatic temperatures. Eur J Mineral 5:393–407

    Google Scholar 

  • Mysen BO, Virgo D, Scarfe CM (1980) Relations between the anionic structure and viscosity of silicate melts — a Raman Spectroscopic study. Am Mineral 65:690–710

    Google Scholar 

  • Mysen BO, Virgo D, Kushiro I (1981) The structural role of aluminium in silicate melts — a Raman Spectroscopic study at 1 atmosphere. Am Mineral 66:678–701

    Google Scholar 

  • Mysen BO, Virgo D, Seifert FA (1982 a) The structure of silicate melts: implications for chemical and physical properties of natural magma. Rev Geophys Space Phys 20:353–383

    Google Scholar 

  • Mysen BO, Virgo D, Seifert FA (1982b) Curve-fitting of Raman spectra of silicate glasses. Am Mineral 67:686–695

    Google Scholar 

  • Navrotsky A, Peraudeau G, McMillan PF, Coutures JP (1982) A thermochemical study of glasses and crystals along the joins silica-calcium aluminate and silica-sodium aluminate. Geochim Cosmochim Acta 46:2039–2047

    Google Scholar 

  • Navrotsky A, Geisinger K, McMillan P, Gibbs GV (1985) The tetrahedral framework in glasses and melts — inferences from molecular orbital calculations and implications for structure, thermodynamics and physical properties. Phys Chem Minerals 11:284–298

    Google Scholar 

  • Piriou A, Alain P (1979) Density of states and structural form related structural properties of amorphous solids. High Temp High Press Res 11:407–414

    Google Scholar 

  • Poe BT, McMillan PF, Angell CA, Sato RK (1992 a) Al and Si coordination in SiO2 Al2O3 glasses and liquids: a study by NMR and IR spectroscopy and MD simulations. Chem Geol 96:333–349

    Google Scholar 

  • Poe BT, McMillan PF, Coté B, Massiot D, Coutures JP (1992 b) SiO2Al2O3 liquids: in-situ study by high temperature 27Al NMR spectroscopy and molecular dynamics simulations. J Phys Chem 96:8220–8224

    Google Scholar 

  • Poe BT, McMillan PF, Coté B, Massiot D, Coutures JP (1993) Magnesium and calcium aluminate liquids: in-situ high-temperature 27Al NMR spectroscopy. Science 259:786–788

    Google Scholar 

  • Poe BT, McMillan PF, Coté B, Massiot D, Coutures JP (1994) Structure and dynamics in calcium aluminate liquids: high-temperature 27Al NMR and Raman spectroscopy. Am Ceram Soc 77:1832–1838

    Google Scholar 

  • Richet P (1984) Viscosity and configurational entropy of silicate melts. Geochim Cosmochim Acta 48:471–483

    Google Scholar 

  • Richet P, Bottinga Y (1983) Verres, liquides et transition vitreuse. Bull Minéral 106:147–168

    Google Scholar 

  • Richet P, Bottinga Y (1984 a) Anorthite, andesite, diopside, wollastonite, cordierite and pyrope: thermodynamics of melting, glass transitions and properties of the amorphous phases. Earth Planet Sci Lett 67:415–432

    Google Scholar 

  • Richet P, Bottinga Y (1984 b) Glass transition and thermodynamic properties of amorphous SiO2, NaAlSi n O2n+2 and KalSi3O8. Geochim Cosmochim Acta 48:453–470

    Google Scholar 

  • Richet P, Bottinga Y (1986) Thermochemical properties of silicate glasses and liquids: a review. Rev Geophys 24:1–25

    Google Scholar 

  • Richet P, Fiquet G (1991) High-temperature heat capacity and prmelting of minerals in the system CaO MgO Al2O3SiO2. J Geophys Res 96:445–456

    Google Scholar 

  • Richet P, Neuville DR (1992) Thermodynamics of silicate melts: configurational properties. In: Saxena S (ed) Thermodynamic Data. Systematics and Estimation pp 132–160. Adv Phys Geochem, Springer-Verlag, New York

    Google Scholar 

  • Richet P, Gillet Ph, Pierre A, Ali Bouhfid M, Daniel I, Fiquet G (1993) A versatile heating stage for measurements up to 2700 K, with applications to phase relationship determinations, Raman spectroscopy and X-ray diffraction. J Appl Phys 74:5451–5456

    Google Scholar 

  • Robertson J (1988) Electronic structure of defects in amorphous SiO2. In: Devine RAB (ed) The Physics and Technology of Amorphous SiO2, pp 91–112. Plenum Press, New York

    Google Scholar 

  • Scamehorn C, Angell CA (1991) Viscosity-temperature relations and structure in fully-polymerized aluminosilicate melts from ion dynamics simulations. Geochim Cosmochim Acta 55:721–730

    Google Scholar 

  • Seifert FA, Mysen BO, Virgo D (1981) Structural similarities of glasses and melts relevant to petrological processes. Geochim Cosmochim Acta 45:1879–1884

    Google Scholar 

  • Seifert FA, Mysen BO, Virgo D (1982) Three dimensional structure of quenched melts (glass) in the system SiO2 NaAlO2, SiO2-CaAl2O4 and SiO2-MgAl2O4. Am Mineral 67:696–717

    Google Scholar 

  • Sharma SK, Matson DW (1984) Raman spectra and structure of sodium aluminogermanate glasses. J Non-Cryst Solids 69:81–96

    Google Scholar 

  • Sharma SK, Simons B, Yoder HS (1983) Raman study of anorthite, calcium Tschermak's pyroxene, and gehlenite in crystalline and glassy states. Am Mineral 68:1113–1125

    Google Scholar 

  • Sharma SK, Matson DW, Philpotts JA, Roush TL (1984) Raman study of the structure of glasses along the join SiO2GeO2. J Non-Cryst Solids 68:99–114

    Google Scholar 

  • Smith HMJ (1948) The theory of the vibrations and the Raman spectrum of the diamond lattice. Phil Trans A 241:105–145

    Google Scholar 

  • Stebbins JF (1987) Identification of multiple structural species in silicate glasses by 29Si NMR. Nature 330:465–467

    Google Scholar 

  • Stebbins JF (1988 a) NMR spectroscopy and dynamic processes in mineralogy and geochemistry. In: Hawthorne FC (ed) Spectroscopic Methods in Mineralogy and Geochemistry. Rev Mineral 18:405–429

  • Stebbins JF (1988b) Effects of temperature and composition on silicate glass structure and dynamics: Si-29 NMR results. J Non-Cryst Solids 106:359–369

    Google Scholar 

  • Stebbins JF (1991) NMR evidence for five-coordinated silicon in a silicate glass at atmospheric pressure. Nature 351:638–639

    Google Scholar 

  • Stebbins JF, Farnan I (1992) Effects of high temperature on silicate liquid structure: a multinuclear NMR study. Science 255:586–589

    Google Scholar 

  • Stebbins JF, Farnan I, Xue X (1992) The structure and dynamics of alkali silicate liquids: a view from NMR spectroscopy. Chem Geol 96:371–385

    Google Scholar 

  • Tarte P (1967) Infra-red spectra of inorganic aluminates and charateristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim Acta A 23:2127–2143

    Google Scholar 

  • Taylor W (1990) Application of infrared spectroscopy to studies of silicate glass structure: Examples from the melilite glasses and the system Na2O-SiO2 and Na2O-Al2O3-SiO2. Proc Indian Acad Sci 99:99–117

    Google Scholar 

  • Taylor M, Brown GE (1979) Structure of mineral glasses—I. The feldspar glasses NaAlSi3O8, KAlSi3O8, CaAl2Si2O8. Geochim Cosmochim Acta 43:61–77

    Google Scholar 

  • Tosseill JA (1993) A theoretical study of the molecular basis of the Al avoidance rule and of the spectral characteristics of Al-O-Al linkages. Am Mineral 78:911–920

    Google Scholar 

  • Urbain G, Bottinga Y, Richet P (1982) Viscosity of silica, silicates and aluminosilicates. Geochim Cosmochim Acta 46:1061–1071

    Google Scholar 

  • Walrafen GE (1975) New slitless optical fiber laser-Raman spectrometer. Appl Spectroscopy 29:179–185

    Google Scholar 

  • Walrafen GE, Stone J (1975) Raman spectral characterization of pure and doped fused silica optical fibers. Appl Spectroscopy 29:337–344

    Google Scholar 

  • Weeks RA, Lell E (1964) Relation between E′ centers and hydroxyl bonds in silica. J Appl Phys 35:1932–1938

    Google Scholar 

  • Wolf GH, Durben DJ, McMillan PF (1990) High pressure Raman spectroscopic study of sodium tetrasilicate (Na2Si4O9) glass. J Chem Phys 93:2280–2288

    Google Scholar 

  • Wong J, Angell CA (1976) Glass Structure by Spectroscopy. Marcel Dekker, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniel, I., Gillet, P., Poe, B.T. et al. In-situ high-temperature Raman spectroscopic studies of aluminosilicate liquids. Phys Chem Minerals 22, 74–86 (1995). https://doi.org/10.1007/BF00202467

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202467

Keywords

Navigation