Skip to main content
Log in

A computer simulation approach to modelling the structure, thermodynamics and oxygen isotope equilibria of silicates

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We use an atomistic model to simulate the structure, lattice dynamics and thermodynamics of silicate minerals. Our approach uses the Born model of a solid, in which the interaction between atoms is described by an interatomic pair potential. We have extended the study of thermodynamics to its very limit by looking at the subtle reaction of oxygen isotope exchange. We have modelled equilibria involving the important metamorphic minerals; albite, diopside, forsterite, pyrope, quartz and wollastonite. The predicted structural and thermodynamic data for these silicates are in very good agreement with the observed values. In addition, we predict not only the correct direction for the phase equilibria for oxygen isotope exchange, but also fractionation factors for the reaction to within a factor of two of the available experimental data. Hence, the potentials used in our approach have shown excellent transferability and have performed very well against the most stringent of tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson DL (1989) Theory of the Earth. Blackwell, Oxford

    Google Scholar 

  • Baldereschi A (1973) Mean-value point in the Brillouin zone. Phys Rev 87:5212–5215

    Google Scholar 

  • Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15:261–267

    Google Scholar 

  • Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon Press, Oxford

    Google Scholar 

  • Bottinga Y, Javoy M (1973) Comments on oxygen isotope geothermometry. Earth Planet Sci Lett 20:250–265

    Google Scholar 

  • Bottinga Y, Javoy M (1975) Oxygen isotope partitioning among the minerals in igueous and metamorphic rocks. Rev Geophys Space Phys 13:401–418

    Google Scholar 

  • Catlow CRA, Mackrodt WC (1982) Theory of simulation methods for lattice and defect energy calculations in crystals. In: Catlow CRA, Mackroct WC (eds) Computer simulation of Solids. Lecture notes in Physics 166, Springer, Berlin Heidelberg New York, pp 3–20

    Google Scholar 

  • Chadi DJ, Cohen ML (1973) Special points in the Brillouin zone. Phys Rev 38:5747–5753

    Google Scholar 

  • Chiba H, Chacko T, Clayton RN, Goldsmith JR (1989) Oxygen isotope fractionation involving diopside, forsterite, magnetite and calcite: application to geothermometry. Geochim Cosmochim Acta 53:2985–2995

    Google Scholar 

  • Clayton RN (1981) Isotopic thermometry. In: Newton RC, Navrotsky A, Wood BJ (eds) Thermodynamics of Minerals and Melts. Springer, Berlin Heidelberg New York, pp 85–109

    Google Scholar 

  • Clayton RN, Goldsmith JR, Karel KJ, Mayeda TK, Newton RC (1975) Limits on the effect of pressure on isotopic fractionation. Geochim Cosmochim Acta 39:1197–1201

    Google Scholar 

  • Clayton RN, Goldsmith JR, Mayeda TK (1989) Oxygen isotope fractionation in quartz, albite, anorthite and calcite. Geochim Cosmochim Acta 53:725–733

    Google Scholar 

  • Cochran W (1973) The dynamics of atoms in crystals. Edward Arnold, London

    Google Scholar 

  • Filippini G, Gramaccioli CM, Simonetta M, Suffritti GB (1976) Lattice-dynamical applications to crystallographic problems: consideration of the Brillouin zone sampling. Acta Crystallogr A32:259–264

    Google Scholar 

  • Finger LW, Ohashi Y (1976) The thermal expansion of diopside to 800° C and a refinement of the crystal structure at 700° C. Am Mineral 61:303–310

    Google Scholar 

  • Fujino K, Sasaki S, Takeuchi Y, Sadanaga R (1981) X-ray determination of electron distributions in forsterite, fayalite and tephroite. Acta Crystallogr B37:513–518

    Google Scholar 

  • Gurevich VM, Khlyustov VG (1979) Calorimeter for determining of low-temperature heat capacity of minerals. Quartz heat capacity under the temperature 9–300 K. Geokhimiia 6:829–839

    Google Scholar 

  • Harlow GE, Brown GE (1980) Low albite: an x-ray and neutron diffraction study. Am Mineral 65:986–995

    Google Scholar 

  • Haselton HT, Westrum EF (1980) Low-temperature heat capacities of synthetic pyrope, grossular and pyrope60 grossular40. Geochim Cosmochim Acta 44:701–709

    Google Scholar 

  • Hemingway BS (1987) Quartz: heat capacities from 340 to 1000 K and revised values for the thermodynamic properties. Am Mineral 72:273–279

    Google Scholar 

  • Holland TJB (1989) Dependence of entropy on volume for silicate and oxide minerals: a review and a predictive model. Am Mineral 74:5–13

    Google Scholar 

  • Jackson RA, Catlow CRA (1988) Computer simulation studies of zeolite structure. Mol Simulation 1:207–224

    Google Scholar 

  • Kieffer SW (1982) Thermodynamics and lattice vibrations of minerals V. Rev Geophys Space Phys 20:827–849

    Google Scholar 

  • Kieffer SW, Navrotsky A (1985) Microscopic to Macroscopic. Reviews in Mineralogy 14. Mineralogical Soc America, Washington

    Google Scholar 

  • Krupka KM, Robie RA, Hemingway BS, Kerrick DM, Ito J (1985a) Low-temperature heat capacities and derived thermodynamic properties of antophyllite, diopside, enstatite, bronzite and wollastonite. Am Mineral 70:249–260

    Google Scholar 

  • Krupka KM, Hemingway BS, Robie RA, Kerrick DM (1985b) High-temperature heat capacities and derived thermodynamic properties of anthophyllite, diopside, dolomite, enstatite, bronzite, talc, tremolite and wollastonite. Am Mineral 70:261–271

    Google Scholar 

  • Leitner BJ, Weidner DJ, Liebermann RC (1980) Elasticity of single crystal pyrope and implications for garnet solid solution series. Phys Earth Planet Inter 22:111–121

    Google Scholar 

  • LePage Y, Calvert LD, Gabe EJ (1980) Parameter variation in low-quartz between 94 and 298 K. J Phys Chem Solids 41:721–725

    Google Scholar 

  • Levien L, Prewitt CT (1981) High-pressure structural study of diopide. Am Mineral 66:315–323

    Google Scholar 

  • Levien L, Weidner DJ, Prewitt CT (1979) Elasticity of diopside. Phys Chem Minerals 4:105–113

    Google Scholar 

  • Lewis GV, Catlow CRA (1985) Potential models for ionic oxides. J Phys C: Solid State Phys 18:1149–1161

    Google Scholar 

  • Matsuhisa Y, Goldsmith JR, Clayton RN (1979) Oxygen isotopic fractionation in the system quartz-albite-anorthite-water. Geochim Cosmochim Acta 43:1131–1140

    Google Scholar 

  • Matsui T, Manghnani MH (1985) Thermal expansion of single-crystal forsterite to 1023 K by Fizeau interferometry. Phys Chem Minerals 12:201–210

    Google Scholar 

  • Matthews A, Goldsmith JR, Clayton RN (1983) Oxygen isotope fractionations involving pyroxenes: the calibration of mineral-pair geothermometers. Geochim Cosmochim Acta 47:631–644

    Google Scholar 

  • McSkimin HJ, Andreatch P, Thurston RN (1965) Elastic moduli of quartz versus hydrostatic pressure at 25° and -195.8° C. J Appl Phys 36:1624–1632

    Google Scholar 

  • Novak GA, Gibbs GV (1971) The crystal chemistry of the silicate garnets. Am Mineral 56:791–825

    Google Scholar 

  • Ohashi Y (1984) Polysynthetically-twinned structures of enstatite and wollastonite. Phys Chem Minerals 10:217–229

    Google Scholar 

  • O'Neil JR (1986) Theoretical and experimental aspects of isotopic fractionation. Rev Mineral 16:1–40

    Google Scholar 

  • O'Neil JR, Taylor HP (1967) The oxygen isotope and cation exchange chemistry of feldspars. Am Mineral 52:1414–1437

    Google Scholar 

  • Openshaw RE, Hemingway BS, Robie RA, Waldbaum DR, Krupka KM (1976) The heat capacities at low temperatures and entropies at 298.15 K of low albite, analbite, microline and high sanidine. J Res US Geol Surv 4:195–204

    Google Scholar 

  • Parker SC, Price GD (1989) Computer modelling of phase transitions in minerals. Adv Solid-State Chem 1:295–327

    Google Scholar 

  • Post JE, Burnham CW (1986) Ionic modelling of mineral structures and energies in the electron gas approximation: TiO2 polymorphs, quartz, forsterite, diopside. Am Mineral 71:142–150

    Google Scholar 

  • Price GD, Parker SC, Leslie M (1987) The lattice dynamics and thermodynamics of the Mg2SiO4 polymorphs. Phys Chem Minerals 15:181–190

    Google Scholar 

  • Richter R, Hoernes S (1988) The application of the increment method in comparison with experimentally derived and calculated O-isotope fractionations. Chem Erde 48:1–18

    Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (104 pascals) pressure and at higher temperature. US Geol Survey Bull 1452

  • Robie RA, Hemingway BS, Takei H (1982) Heat capacities and entropies of Mg2SiO4, Mn2SiO4 and Co2SiO4 between 5 and 380 K. Am Mineral 67:470–482

    Google Scholar 

  • Sanders MJ, Leslie M, Catlow CRA (1984) Interatomic potentials for SiO2. J Chem Soc, Chem Commun 1271–1273

  • Schütze H (1980) Der Isotopenindex — eine Inkrementenmethode zur näherungsweisen Berechnung von Isotopenaustauschgleichgewichten zwischen kristallin Substanzen. Chem Erde 39:321–334

    Google Scholar 

  • Smyth JR (1989) Electrostatic characterization of oxygen sites in minerals. Geochim Cosmochim Acta 53:1101–1110

    Google Scholar 

  • Suzuki I, Anderson OL, Sumino Y (1983) Elastic properties of a single-crystal forsterite Mg2SiO4, up to 1,200 K. Phys Chem Minerals 10:38–46

    Google Scholar 

  • Urey HC (1947) The thermodynamic properties of isotopic substances. J Chem Soc (London) 562–581

  • Wall A, Price GD (1988) Computer simulation of the structure, lattice dynamics and thermodynamics of ilmenite-type MgSiO3. Am Mineral 73:224–231

    Google Scholar 

  • Weston RM, Rogers PS (1976) Anisotropic thermal expansion characteristics of wollastonite. Miueral Mag 40:649–651

    Google Scholar 

  • Winkler B, Dove MT, Lesie M (1990) Static lattice energy minimization and lattice dynamics calculations on alumino-silicate minerals. Preprint

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, A., Price, G.D. & Mendelssohn, M.J. A computer simulation approach to modelling the structure, thermodynamics and oxygen isotope equilibria of silicates. Phys Chem Minerals 17, 690–699 (1991). https://doi.org/10.1007/BF00202239

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202239

Keywords

Navigation