Skip to main content

Dielectric constants of topaz, orthoclase and scapolite and the oxide additivity rule

Abstract

The dielectric constants and dissipation factors of topaz, scapolite and orthoclase were determined at 1 MHz using a two-terminal method and empirically determined edge corrections. The results are: topaz κ′ a =6.61 tan δ=0.0005 κ′ b =6.82 tan δ=0.0007 κ′ c =6.81 tan δ=0.0007 orthoclase κ′ a =4.69 tan δ=0.0007 κ′ b =5.79 tan δ=0.0007 κ′ c =5.63 tan δ=0.0011 κ′ 11 =4.72 κ′ 22 =5.79 κ′ 33 =5.76 scapolite κ′ a =6.74 tan δ=0.0004 κ′ c =8.51 tan δ=0.0004 The deviation (Δ) between measured dielectric polarizabilities as determined from the Clausius-Mosotti equation and those calculated from the sum of ion polarizabilities according to α D (mineral)=∑αD (ions) for topaz is 2.5%. The large deviations of orthoclase and scapolite from the oxide additivity rule with δ=+7.2 and + 17.6%, respectively, are attributed to “rattling” K ions in orthoclase and “rattling” (Na,K,Ca) ions and disordered O= and Cl- ions in scapolite.

This is a preview of subscription content, access via your institution.

References

  • Armstrong JT (1982) New ZAF and α-factor correction procedures for the quantitative analysis of individual microparticles. In: Heinrich KFJ (ed) Microbeam Analysis. San Francisco Press, San Francisco, pp 175–180

    Google Scholar 

  • Armstrong JT (1988) Quantitative Analysis of Silicate and Oxide Materials: Comparison of Monte Carlo, ZAF and φ(ϱ-z) Procedures. In: Newbury DE (ed) Microbeam Analysis. San Francisco Press, San Francisco, pp 239–256

    Google Scholar 

  • Bartels RA, Koo JC, Thomas ML (1979) The temperature and pressure dependence of the dielectric constants of CaO and SrO. Phys Stat Sol 52A:K213–216

    Google Scholar 

  • Brese NE, O'Keeffe M (1991) Bond valence parameters for solids. Acta Crystallogr B47:192–197

    Google Scholar 

  • Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr B41:244–247

    Google Scholar 

  • Church RH, Webb WE, Salsman JB (1988) Dielectric properties of low-loss minerals. US Bureau of Mines Report of Investigations 9194. 1–23

    Google Scholar 

  • Colville AA, Ribbe PH (1968) The crystal structure of an adularia and a refinement of the structure of orthoclase. Amer Mineral 53:25–37

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1962) Rock-forming Minerals. Vol. 1 Ortho- and Ring Silicates. Longman, London pp 145–150

    Google Scholar 

  • Dunitz JD, Orgel LE (1960) Stereochemistry of ionic solids. Adv Inorg Chem Radiochem 2:1–60

    Google Scholar 

  • Fellinger R (1919) Über die Dielectricitätskonstante einiger naturalischer und synthetische Edelsteine. Ann Phys 60:181–195

    Google Scholar 

  • Fontanella J, Andeen C, Schuele D (1974) Low frequency dielectric constants of α-quartz, sapphire, MgF2 and MgO. J Appl Phys 45:2852–2854

    Google Scholar 

  • Ganguli AK, Vega AJ, Shannon RD, Rossman GR (1992) Dielectric constants of beryl and the oxide additivity rule. Phys Chem Mineral (submitted)

  • Hewlett-Packard (1984) Operating manual for 4275A multi-frequency LCR meter. Yokogawa-Hewlett-Packard Ltd., Tokyo

    Google Scholar 

  • Keller GV (1966) Electrical Properties of Rocks and Minerals in Handbook of Physical Constants. In: Clark SP Jr (ed). Geol Soc Amer Memoir 97:553–565

  • Liebisch T, Rubens H (1919) Über die optischen Eigenschaften einiger Kristalle in langwelligen ultraroten Spektrum. Sitzber Preuss Akad Wiss Phys Math Kl. 876–899

  • Lin SB, Burley BJ (1973) Crystal structure of a sodium and chlorine-rich scapolite. Acta Crystallogr 629:1272–1278

    Google Scholar 

  • Lowndes RP, Martin DH (1969) Dielectric dispersion and the structure of ionic lattices. Proc Roy Soc 308A:473–496

    Google Scholar 

  • Olhoeft GR (1981) “Electrical properties of rocks” in Physical Properties of Rocks and Minerals, Touloukian YS et al. (eds). McGraw-Hill, New York pp 257–329

    Google Scholar 

  • O'Keefe M (1989) The prediction and interpretation of bond lengths in crystals. Struct Bond 71:161–190

    Google Scholar 

  • Orgel LE (1958) Ferroelectricity and the structure of transition-metal oxides. Discus Faraday Soc 26:138–145

    Google Scholar 

  • Roberts R (1950) A theory of dielectric polarization in alkali halide crystals. Phys Rev 77:258–263

    Google Scholar 

  • Roberts R (1951) Polarizabilities of ions in perovskite-type crystals. Phys Rev 81:865–868

    Google Scholar 

  • Schmidt W (1902) Bestimmung der Dielektricitätsconstanten von Kristallen mit elektrischen Wellen. Ann Phys 9:919–937

    Google Scholar 

  • Shannon RD, Subramanian MA (1989) Dielectric constants of chrysoberyl, spinel, phenacite and forsterite and the oxide additivity rule. Phys Chem Minerals 16:747–751

    Google Scholar 

  • Shannon RD, Subramanian MA, Mariano AM, Rossman GR (1989) Mineral dielectric constants and the oxide additivity rule. Proceedings of the Materials Research Society Symposium on Materials for Magneto-Optic Data Storage, San Diego, April 24–27, Materials Research Society, Pittsburgh

    Google Scholar 

  • Shannon RD, Subramanian MA, Allik TH, Kimura H, Kokta MR, Randies MH, Rossman GR (1990) Dielectric constants of yttrium and rare earth garnets, the polarizability of gallium oxide and the oxide additivity rule. J Appl Phys 67:3798–3802

    Google Scholar 

  • Shannon RD (1991) Factors affecting the dielectric constants of oxides and fluorides, in “Chemistry of Electronic Ceramic Materials”, Proc. of the International Conference on the Chemistry of Electronic Ceramic Materials. Jackson Hole, Wyoming. Aug.17–22. NIST Special Publication, 804 pp. 457–471, US Government Printing Office, Washington

    Google Scholar 

  • Shannon RD, Subramanian MA, Hosoya S, Rossman GR (1991a) Dielectric constants of tephroite, fayalite and olivine and the oxide additivity rule. Phys Chem Minerals 18:1–6

    Google Scholar 

  • Shannon RD, Oswald RA, Allik TH, Damen JP, Mateika D, Wechsler BA, Rossman GR (1991b) Dielectric constants of YVO4, Fe-, Ge-, and V-containing garnets, the polarizabilities of Fe2O3, GeO2, and V2O5 and the oxide additivity rule. JSolid St Chem 95:313–318

    Google Scholar 

  • Shannon RD, Rossman GR (1992) Dielectric constants of silicate garnets and the oxide additivity rule. Amer Mineral 77:94–100

    Google Scholar 

  • Shannon RD, Subramanian MA, Mariano AN, Gier TE, Rossman GR (1992a) Dielectric constants of diaspore and B-, Be-, and P-containing minerals, the polarizabilities of B2O3 and P2O5, and the oxide additivity rule. Amer Mineral 77:101–106

    Google Scholar 

  • Shannon RD, Dickinson JE, Rossman GR (1992b) Dielectric constants of crystalline and amorphous spodumene, anorthite and diopside and the oxide additivity rule. Phys Chem Minerals(in press)

  • Shannon RD, Oswald RA, Parise JB, Chai BHT, Byszewski P, Pajaczowska A, Sobolewski R (1992c) Dielectric constants and crystal structures of CaYAlO4, CaNdAlO4 and SrEaAlO4 and deviations from the oxide additivity rule. J Sol St Chem 98:90–98

    Google Scholar 

  • Shannon RD, Rossman GR (1992d) Dielectric constants of apatite, epidote, vesuvianite and zoisite and the oxide additivity rule. Phys Chem Minerals (in press)

  • Shannon RD, Iishi K, Allik TH, Rossman GR, Liebertz J (1992e) Dielectric constants of BaO and melilite and the oxide additivity rule. Eur J Mineral (in press)

  • Shannon RD, Mariano AN, Rossman GR (1992f) Effect of H2O and CO2 on dielectric properties of single crystal cordierite and comparison with polycrystalline cordierite. J Amer Ceram Soc (in press)

  • Subramanian MA, Shannon RD, Chai BHT, Abraham MM, Wintersgill MC (1989) Dielectric constants of BeO, MgO and CaO using the two-terminal method. Phys Chem Minerals 16:741–746

    Google Scholar 

  • Subramanian MA, Shannon RD (1989) Dielectric constant of Y-stabilized zirconia, the polarizability of ZrO2 and the oxide additivity rule. Mat Res Bull 24:1477–1483

    Google Scholar 

  • Takubo J (1941) Versuche über die Dielektrizitätskonstanten einiger Mineralien und über das dielektrische Verhalten derselben bei Erhitzung. Mem Coll Sci, Kyoto Imperial University, Ser B 16:95–154

    Google Scholar 

  • Takubo J, Ukai Y, Kakitani S (1953) On the dielectric constants of minerals. Mineral J 1:3–24

    Google Scholar 

  • Wappler G (1964) Dielektrische Messungen an Einkristallen von Mineralen Z Phys Chem 228:34–38

    Google Scholar 

  • Westphal WB, Sils A (1972) “Dielectric Constant and Loss Data”. U.S. National Technical Information Service AFML-TR-72-39

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shannon, R.D., Oswald, R.A. & Rossman, G.R. Dielectric constants of topaz, orthoclase and scapolite and the oxide additivity rule. Phys Chem Minerals 19, 166–170 (1992). https://doi.org/10.1007/BF00202104

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202104

Keywords

  • Oxide
  • Dielectric Constant
  • Mineral Resource
  • Material Processing
  • Oxide Additivity