Skip to main content

Dielectric constants of apatite, epidote, vesuvianite, and zoisite, and the oxide additivity rule

Abstract

The dielectric constants and dielectric loss values of 4 Ca-containing minerals were determined at 1 MHz using a two-terminal method and empirically determined edge corrections. The results are: vesuvianitel κ′ a=9.93 tan δ=0.006 κ′ c=9.79 tan δ=0.005 vesuvianitel κ′ a=10.02 tan δ=0.002 κ′ c=9.85 tan δ=0.003 zoisite1 κ′ a =10.49 tan δ=0.0006 κ′ b =15.31 tan δ=0.0008 κ′ c=9.51 tan δ=0.0008 zoisite2 κ′ a =10.55 tan δ=0.0011 κ′ b =15.45 tan δ=0.0013 κ′ c=9.39 tan δ=0.0008 epidote κ′ 11= 9.52 tan δ=0.0008 κ′ 22=17.1 tan δ=0.0009 κ′ 33= 9.37 tan δ=0.0006 fluorapatite1 κ′ a =10.48 tan δ=0.0008 κ′ c = 8.72 tan δ=0.0114 fluorapatite2 κ′ a =10.40 tan δ=0.0010 κ′ c=8.26 tan δ=0.0178 The deviation (δ) between measured dielectric polarizabilities as determined from the Clausius-Mosotti equation and those calculated from the sum of oxide polarizabilities according to α D (mineral)=∑ α D (oxides) for vesuvianite is ∼ 0.5%. The large deviations of epidote and zoisite from the additivity rule with Δ=+ 10.1 and + 11.7%, respectively, are attributed to “rattling” Ca ions. The combined effects of both a large F thermal parameter and possible F-ion conductivity in fluorapatite are believed to be responsible for Δ=+2–3%. Although variation of oxygen polarizability with oxygen molar volume (Vo) is believed to affect the total polarizabilities, the variation of Vo in these Ca minerals is too small to observe the effect.

This is a preview of subscription content, access via your institution.

References

  • Andeen C, Fontanella J, Schuele D (1971) Low-frequency dielectric constants of the alkaline-earth fluorides by the method of substitution. J Appl Phys 42:2216–2219

    Google Scholar 

  • Armstrong JT (1982) New ZAP and α-factor correction procedures for the quantitative analysis of individual microparticles. In: Heinrich KFJ (ed), Microbeam Analysis, San Francisco Press, San Francisco, pp 175–180

    Google Scholar 

  • Armstrong JT (1988) Quantitative Analysis of Silicate and Oxide Materials: Comparison of Monte Carlo, ZAF and φ(ϱ-z) Procedures. In: Newbury DE (ed) Microbeam Analysis. San Francisco Press, San Francisco, pp 239–256

    Google Scholar 

  • Bartels RA, Koo JC, Thomas ML (1979) The temperature and pressure dependence of the dielectric constants of CaO and SrO. Phys Stat Sol 52A:K213–216

    Google Scholar 

  • Brown ID, Altermatt D (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr B41:244–247

    Google Scholar 

  • Cheng CK (1940) The dielectric constant of some metallic sulfates containing various amounts of water of crystallization. Phil Mag 30:505–515

    Google Scholar 

  • Coker H (1976) “Empirical Free-Ion Polarizabilities of the Alkali Metal, Alkaline Earth Metal and Halide Ions”, J Phys Chem 80:2078–2084

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1962) Rock-forming Minerals, vol. 5 Non-Silicates. Longmans, pp 323–338

  • Fontanella J, Andeen C, Schuele D (1974) Low frequency dielectric constants of α-quartz, sapphire, MgF2 and MgO. J Appl Phys 45:2852–2854

    Google Scholar 

  • Fowler PW, Madden PA (1983) The in-crystal polarizability of the fluoride ion. Mol Phys 49:913–923

    Google Scholar 

  • Fowler PW, Madden PA (1984) In-crystal polarizabilities of alkali and halide ions. Phys Rev B29:1035–1042

    Google Scholar 

  • Fowler PW, Madden PA (1985) In-crystal polarizability of O2-. J Phys Chem 89:2581–2585

    Google Scholar 

  • Giuseppetti G, Mazzi F (1983) The crystal structure of a vesuvianite with P4/n symmetry. Tschermaks Min Petr Mitt 31:277–288

    Google Scholar 

  • Heydweiller A (1920) Dichte, Dielektricitatskonstante und Refraktion Fester Salze. Z Phys 3:308–317

    Google Scholar 

  • Hewlett-Packard (1984) Operating manual for 4275A multi-frequency LCR meter. Yokogawa-Hewlett-Packard Ltd., Tokyo

    Google Scholar 

  • Hughes JM, Cameron M, Crowley KD (1989) Structural variation in natural F, OH, and Cl apatites. Am Mineral 74:870–876

    Google Scholar 

  • Jonker GH, VanSanten JH (1947) De dielectrische eigenshappen van titanaten van het perovkiet-type. Chem Weekblad 43:672–679

    Google Scholar 

  • Keller GV (1966) Electrical Properties of Rocks and Minerals in Handbook of Physical Constants. S.P. Clark, Jr. (ed) Geol Soc, Am Memoir 97:553–565

  • Kirsch R, Gerard A, Wautelet (1974) Nuclear quadrupole couplings and polarizability of the oxygen ion in spinel-structure compounds. J Phys C 7:3633–3644

    Google Scholar 

  • Lasaga AC, Cygan RT (1982) Electronic and ionic polarizabilities of silicate minerals. Am Mineral 67:328–334

    Google Scholar 

  • Mahan GD (1980) Polarizabilities of ions in crystals. Sol State Ionics 1:29–45

    Google Scholar 

  • Maiti GC, Friedemann M (1981) Infludence of fluorine substitution on the proton conductivity of hydroxyapatite. J Chem Soc Dalton Trans 1981:949–955

    Google Scholar 

  • Narayana Rao, DAAS (1949) Dielectric Constants of Crystals III. Proc, Ind. Acad Sci 30A:82–86

    Google Scholar 

  • Olhoeft GR (1981) “Electrical properties of rocks” in Physical Properties of Rocks and Minerals. Y.S. Touloukian (ed). McGraw-Hill, New York, pp 257–329

    Google Scholar 

  • O'Keeffe M (1989) The prediction and interpretation of bond lengths in crystals. Struct Bond 71, 161–190

    Google Scholar 

  • Orgel LE (1958) Ferroelectricity and the structure of transition-metal oxides. Dis Far Soc 26:138–145

    Google Scholar 

  • Parker R (1961) Static dielectric constant of rutile, 1.6–1060° K. Phys Rev 124:1719–1722

    Google Scholar 

  • Seehra MS, Helmick RE, Srinivasan G (1986) Effect of temperature and antiferromagnetic ordering on the dielectric constants of MnO and MnF2. Journal of Physics C. Solid State 19:1627–1635

    Google Scholar 

  • Roberts R (1949) Dielectric constants and polarization of ions in simple crystals and barium titanate. Phys Rev 76:1215–1220

    Google Scholar 

  • Roberts R (1950) A theory of dielectric polarization in alkali halide crystals. Phys Rev 77:258–263

    Google Scholar 

  • Roberts R (1951) Polarizabilities of ions in perovskite-type crystals. Phys Rev 81:865–868

    Google Scholar 

  • Schmidt W (1902) Bestimmung der Dielektricitatsconstanten von Kristallen mit elektrischen Wellen. Ann Phys 9:919–937

    Google Scholar 

  • Seehra MS, Helmick RE, Srinivasan G (1986) Effect of temperature and antiferromagnetic ordering on the dielectric constants of MnO and MnF2. J Phys C 19:1627–1635

    Google Scholar 

  • Shannon RD (1991) Factors affecting the dielectric constants of oxides and fluorides, in “Chemistry of Electronic Ceramic Materials”, Proc. of the International Conference on the Chemistry of Electronic Ceramic Materials. Jackson Hole, Wyoming. Aug. 17–22. NIST Special Publication, 804. pp 457–471, US Govern-ment Printing Office, Washington

    Google Scholar 

  • Shannon RD, Subramanian MA (1989) Dielectric constants of chrysoberyl, spinel, phenacite and forsterite and the oxide additivity rule. Phys Chem Minerals 16:747–751

    Google Scholar 

  • Shannon RD, Rossman GR (1991) Dielectric constant of MgAl2O4 spinel and the oxide additivity rule. J Phys Chem Solids 52:1055–1059

    Google Scholar 

  • Shannon RD, Rossman GR (1992) Dielectric constants of silicate garnets and the oxide additivity rule. Am Mineral 77:94–100

    Google Scholar 

  • Shannon RD, Subramanian MA, Mariano AM, Rossman GR (1989) Mineral dielectric constants and the oxide additivity rule. Proceedings of the Materials Research Society Symposium on Materials for Magneto-Optic Data Storage, San Diego, April 24–27, Material Research Society, Pittsburgh

    Google Scholar 

  • Shannon RD, Subramanian MA, Allik TH, Kimura H, Kokta MR, Randles MH, Rossman GR (1990) Dielectric constants of yttrium and rare earth garnets, the polarizability of gallium oxide and the oxide additivity rule. J Appl Phys 67:3798–3802

    Google Scholar 

  • Shannon RD, Subramanian MA, Hosoya S, Rossman GR (1991a) Dielectric constants of tephroite, fayalite and olivine and the oxide additivity rule. Phys Chem Minerals 18:1–6

    Google Scholar 

  • Shannon RD, Oswald RA, Allik TH, Damen JP, Mateika D, Wechsler BA, Rossman GR (1991b) Dielectric constants of YVO4, Fe-, Ge-, and V-containing garnets, the polarizabilities of Fe2O3, GeO2, and V2O5 and the oxide additivity rule. J Solid St Chem 95:313–318

    Google Scholar 

  • Shannon RD, Subramanian MA, Mariano AN, Gier TE, Rossman GR (1992a) Dielectric constants of diaspore and B-, Be-, and P-containing minerals, the polarizabilities of B2O3 and P2O5, and the oxide additivity rule. Am Mineral 77:101–106

    Google Scholar 

  • Shannon RD, Dickinson JE, Rossman GR (1992b) Dielectric constants of crystalline and amorphous spodumene, anorthite and diopside and the oxide additivity rule. Phys Chem Minerals (in press)

  • Shannon RD, Oswald RA, Parise JB, Chai BHT, Byszewski P, Pajaczowska A, Sobolewski R (1992c) Dielectric constants and crystal structures of CaYAlO4, CaNdAlO4 and SrLaAlO4 and deviations from the oxide additivity rule. Solid St Chem 98:90–98

    Google Scholar 

  • Subramanian MA, Shannon RD (1989) Dielectric constant of Y-stabilized zirconia, the polarizability of ZrO2 and the oxide additivity rule. Mat Res Bull 24:1477–1483

    Google Scholar 

  • Subramanian MA, Shannon RD, Chai BHT, Abraham MM, Wintersgill MC (1989) Dielectric constants of BeO, MgO and CaO using the two-terminal method. Phys Chem Minerals 16:741–746

    Google Scholar 

  • Takubo J (1941) Versuche über die Dielektrizitatskonstanten einiger Mineralien und über das dielektrische Verhalten derselben bei Erhitzung. Mem Coll Sci., Kyoto Imperial University, Ser.B 16:95–154

    Google Scholar 

  • Takubo J, Ukai Y, Kakitani S (1953) On the dielectric constants of minerals. Mineral J 1:3–24

    Google Scholar 

  • Tessman JR, Kahn AH, Shockley W (1953) Electronic polarizabilities of ions in crystals. Phys Rev 92:890–895

    Google Scholar 

  • Yamashita K, Owada H, Umegaaki T, Kanazawa T, Futagami T (1988) Ionic conduction in apatite solid solutions. Sol State Ionics 28–30:660–663

    Google Scholar 

  • Yamashita K, Owada H, Umegaki T, Kanazawa T (1990) Protonic conduction in yttrium hydroxyapatite ceramics and their applicability to H2-O2 fuel cell. Sol State Ionics 40/41:918–921

    Google Scholar 

  • Young EJ, Meyers AT, Munson EL, Conklin NM (1969) Mineralogy and geochemistry of fluorapatite from Cerro de Mercado, Durango Mexico. Geol Sur Res 1969, D84-D92

    Google Scholar 

  • Wappler G (1964) Dielektrische Messungen an Einkristallen von Mineralen Z. Phys Chem 228:34–38

    Google Scholar 

  • Westphal WB, Sils A (1972) “Dielectric Constant and Loss Data” U.S. National Technical Information Service AFML-TR-72-39

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Shannon, R.D., Rossman, G.R. Dielectric constants of apatite, epidote, vesuvianite, and zoisite, and the oxide additivity rule. Phys Chem Minerals 19, 157–165 (1992). https://doi.org/10.1007/BF00202103

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202103

Keywords

  • Oxide
  • Oxygen
  • Dielectric Constant
  • Combine Effect
  • Apatite