Advertisement

Trees

, Volume 7, Issue 4, pp 237–241 | Cite as

A contribution to understanding the internal nitrogen budget of beech (Fagus sylvatica L.)

  • Vjekoslav Glavac
  • Hubert Jochheim
Article

Summary

The seasonal variation in the total nitrogen content of the xylem sap of the lower trunk section was investigated for two middle aged beech tree stands in northern Hessen each containing 130 trees. In addition seasonal changes in the percentage of nitrate in the total nitrogen content are described. The median values of the total nitrogen content of the xylem sap during the spring mobilization period reached 175 and 250 mg/l. During the summer about 35% of the total nitrogen in the xylem sap is in the form of nitrate. Finally, the distribution of NO3 in the xylem sap along the trunk height was studied for two sample trees for each of the four seasons (n = 8).

Key words

Fagus sylvatica Nitrate Total nitrogen content Trunk height gradient Seasonal variation Xylem sap 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. BioScience 39: 378–386Google Scholar
  2. Beese F (1986) Parameter des Stickstoffumsatzes in Ökosystemen mit Böden unterschiedlicher Acidität. Göttinger Bodenk Ber 90: 344Google Scholar
  3. Bollard EG (1953) The use of tracheal sap in the study of apple-tree nutrition. J Exp Bot 4: 363–368Google Scholar
  4. Deng X, Weinbaum SA, De Jong TM (1989 a) Use of labeled nitrogen to monitor transition in nitrogen dependance from storage to currentyear uptake in mature walnut trees. Trees 3: 11–16Google Scholar
  5. Deng X, Weinbaum SA, DeJong TM, Muraoka TT (1989 b) bUtilization of nitrogen from storage and current-year uptake in walnut spurs during the spring flush of growth. Physiol Plant 75: 492–498Google Scholar
  6. Ebben U, Glavac V (1992) Analyse des Xylemsaftes und anderer Parameter des bauminternen Mineralstoffhaushaltes. Abschlußber Teilvorhaben P6.3.2.4 des BMFT-Projektes “Stabilitätsbedingungen von Waldökosystemen”. Ber Forschungsz Waldökosysteme B 31: 488–492Google Scholar
  7. Ferguson AR, Eiseman JA, Leonard JA (1983) Xylem sap from Actinidia chinensis: seasonal changes in composition. Ann Bot 51: 823–833Google Scholar
  8. Finlay RD, Ek H, Odham G, Söderström B (1989) Uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium and nitrate sources by intact ectomycorrhizal systems of Fagus sylvatica infected with Paxillus involutus. New Phytol 113: 47–55Google Scholar
  9. Flückiger W (1988) Stickstoff und Stickstoffverbindungen in der Luft und ihre ökophysiologische Bedeutung. Chimia 42: 41–56Google Scholar
  10. Gebauer G, Stadler J (1990) Nitrate assimilation and nitrate content in different organs of ash trees (Fraxinus excelsior). In: Van Beusichem ML (ed) Plant nutrition — physiology and applications. Kluwer Academic, Dordrecht, pp 101–106Google Scholar
  11. Geider M, Rothe GM (1988) Ergebnisse von Magnesiakalk-Düngungsversuchen — Spezifische Zunahme einzelner Ionen, Zucker und Aminosäuren im Frühjahrssaft. AFZ 43: 846–847Google Scholar
  12. Glavac V, Koenies H, Jochheim H, Ebben U (1989) Mineralstoffe im Xylemsaft der Buche und ihre jahreszeitlichen Konzentrationsveränderungen entlang der Stammhöhe. Angew Bot 63: 471–486Google Scholar
  13. Glavac V, Koenies H, Ebben U (1990a) Seasonal variations in mineral concentrations in the trank sap of beech (Fagus sylvatica L.) in a 42-year-old beech forest stand. New Phytol 116: 47–54Google Scholar
  14. Glavac V, Koenies H, Ebben U (1990b) Seasonal variation of calcium, magnesium, potassium, and manganese contents in xylem sap of beech (Fagus sylvatica L.) in a 35-year-old limestone beech forest stand. Trees 4: 75–80Google Scholar
  15. Glavac V, Koenies H, Ebben U (1990c) Seasonal variation and axial distribution of cadmium concentrations in trunk xylem sap of beech trees (Fagus sylvatica L.). Angew Bot 64: 357–364Google Scholar
  16. Glavac V, Koenies H, Ebben U, Avenhaus U (1991) Jahreszeitliche Veränderung der NO3 -Konzentrationen im Xylemsaft des unteren Stammteiles von Buchen (Fagus sylvatica L.). Z Pflanzenernaehr Bodenk 154: 121–125Google Scholar
  17. Glavac V, Michalas F, Ebben U, Jochheim H, Koenies H, Parlar H (1992) Seasonal variation and axial distribution of aluminium concentrations in trunk xylem sap of adult beech trees (Fagus sylvatica L.). Angew Bot 66: 58–62Google Scholar
  18. Havill DC, Lee JA, De-Felice J (1977) Some factors limiting nitrate utilization in acidic and calcereous grasslands. New Phytol 78: 649–659Google Scholar
  19. Kato T, Yamagata M, Tsukahara S (1984) Seasonal variations in major nitrogenous components in buds, leaves, bark, and wood of Satsuma Mandarin trees. J Jpn Soc Hort Sci 53: 17–22Google Scholar
  20. Kinzel H (1982) Pflanzenökologie und Mineralstoffwechsel. Ulmer, Stuttgart, p 534Google Scholar
  21. Marangoni B, Vitagliano C, Peterlunger E (1986) The effect of defoliation on the composition of xylem sap from cabernet franc grapevines. Am J Enol Vitic 37: 259–262Google Scholar
  22. Martin F, Stewart GR, Genetet I, Le Tacon F (1986) Assimilation of 15NH4 + by beech (Fagus sylvatica L.) ectomycorrhizas. New Phytol 102: 85–94Google Scholar
  23. Millard P, Proe MF (1991) Leaf demography and the seasonal internal cycling of nitrogen in sycamore (Acerpseudoplatanus L.) seedlings in relation to nitrogen supply. New Phytol 117: 587–596Google Scholar
  24. Moreno J, Garcia-Martinez JL (1983) Seasonal variation of nitrogen compounds in the xylem sap of Citrus. Physiol Plant 59: 669–675Google Scholar
  25. Neitzke M (1990) Einfluß von Ammonium- und Nitratstickstoff auf die Entwicklung von Buchenjungpflanzen. Z Pflanzenernaehr Bodenk 153: 225–228Google Scholar
  26. Oland K (1959) Nitrogenous reserves of apple trees. Physiol Plant 12: 594–647Google Scholar
  27. Rufty TW, Volk RJ, McClure PR, Israel DW, Raper CD (1982) Relative content of NO3 and reduced N in xylem exudate as an indicator of root reduction of concurrently absorbed 15NO3 . Plant Physiol 69: 166–170Google Scholar
  28. Sauter JJ (1981) Seasonal variation of amino acids and amides in the xylem sap of Salix. Z Pflanzenphysiol 101: 399–411Google Scholar
  29. Schmidt B, Strack D, Weidner M (1991) Nitrate reductase in needles, roots and trunk wood of spruce trees [Picea abies (L.) Karst.]. Trees 5: 215–226Google Scholar
  30. Schulze E-D (1989) Air pollution and forest decline in a spruce (Picea abies) forest. Science 244: 776–783Google Scholar
  31. Schupp R, Glavac V, Rennenberg H (1991) Thiol composition of xylem sap of beech trees. Phytochem 30: 1415–1418Google Scholar
  32. Taylor BK (1967) Storage and mobilisation of nitrogen in fruit trees: a rewiew. J Aust Agric Sci 33: 23–29Google Scholar
  33. Taylor BK, Van den Ende B (1969) The nitrogen nutrition of the peach tree. IV. Storage and mobilization of nitrogen in mature trees. Aust J Agric Res 20: 869–881Google Scholar
  34. Titus JS, Kang SM (1982) Nitrogen metabolism, translocation, and recycling in apple trees. Hortic Rev 4: 204–246Google Scholar
  35. Tromp J (1979) Seasonal variations in the composition of xylem sap of apple with respect to K, Ca, Mg, and N. Z Pflanzenphysiol 94: 189–194Google Scholar
  36. Tromp J (1983) Nutrient reserves in roots of fruit trees, in particular carbohydrates and nitrogen. Plant Soil 71: 401–413Google Scholar
  37. Tromp J, Ovaa JC (1967) Seasonal variations in the amino acid composition of xylem sap of apple. Z Pflanzenphysiol 57: 11–21Google Scholar
  38. Tromp J, Ovaa JC (1985) Response of young apple trees to time of nitrogen fertilization with respect to the nitrogen, potassium, and calcium levels in xylem sap, new growth, and the tree as a whole. J Plant Physiol 119: 301–309Google Scholar
  39. Ulrich B (1980) Die Bedeutung von Rodung und Feuer für die Boden- und Vegetationsentwicklung in Mitteleuropa. Forstw Cbl 99: 376–384Google Scholar
  40. Ulrich B (1981) Theoretische Betrachtung des Ionenkreislaufs in Waldökosystemen. Z Pflanzenernaehr Bodenk 144: 647–659Google Scholar
  41. Weinbaum SA, Klein I, Broadbent FE, Micke WC, Muraoka TT (1984) Use of isotopic nitrogen to demonstrate dependence of mature almond trees on annual uptake of soil nitrogen. J Plant Nutr 7: 975–990Google Scholar
  42. Wolfenden J, Pearson M, Francis BJ (1991) Effects of over-winter fumigation with sulphur and nitrogen dioxides on biochemical parameters and spring growth in red spruce (Picea rubens Sarg.). Plant Cell Environ 14: 35–45Google Scholar
  43. Wutscher HK, McDonald RE (1986) Mineral elements and organic acids in branch and root xylem sap of healthy and blight-affected sweet orange trees. J Am Soc Hort Sci 111: 426–429Google Scholar
  44. Ziegler H (1975) Nature of transported substances. In: Pirson A, Zimmermann MH (eds) Encyclopedia of plant physiology, new series, vol 1. Springer, Berlin Heidelberg New York, pp 59–100Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Vjekoslav Glavac
    • 1
  • Hubert Jochheim
    • 1
  1. 1.Arbeitsgruppe für Pflanzen-, Vegetations- und Landschaftsökologie, Fachbereich Biologie/Chemie, Universität-Gesamthochschule KasselKasselGermany

Personalised recommendations