Skip to main content
Log in

Leucine side-chain rotamers in a glycophorin A transmembrane peptide as revealed by three-bond carbon—carbon couplings and 13C chemical shifts

  • Short Communications
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

We have used a spin-echo difference NMR pulse sequence to measure three-bond J couplings between δ- and α-carbons of the leucine residues in a micelle-associated helical peptide dimer that corresponds to residues 62–101 of the transmembrane erythrocyte protein glycophorin A. The observed 3J couplings correlate strongly with the 13C chemical shift of the δ-methyl groups, and within experimental error both the shift distribution of the methyl carbons and the variations in 3J can be accounted for by variations in side-chain rotamer populations. We infer that all leucine side chains in this peptide dimer are in fast exchange among X 2 rotamers and sample two of the three possible rotameric states, even when the side chain forms part of the dimer interface. The observed correlation of chemical shift with couplings can be traced to a γ-gauche interaction of methyl and α-carbons. This correlation may provide an alternate route to rotamer analysis in some protein systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • AlexandrescuA.T., AbeygunawardanaC. and ShortleD. (1994) Biochemistry, 33, 1063–1072.

    Google Scholar 

  • ArcherS.J., IkuraM., TorchiaD.A. and BaxA. (1991) J. Magn. Reson., 95, 636–641.

    Google Scholar 

  • BaxA., MaxD. and ZaxD. (1992) J. Am. Chem. Soc., 114, 6923–6925.

    Google Scholar 

  • BoothH. (1964) Tetrahedron, 20, 2211–2216.

    Google Scholar 

  • BystrovV.F. (1976) Prog. NMR Spectrosc., 10, 41–81.

    Google Scholar 

  • DallingD.K. and GrantD.M. (1967) J. Am. Chem. Soc., 89, 6612–6622.

    Google Scholar 

  • DavisA.L., KeelerJ., LaueE.D. and MoskauD. (1992) J. Magn. Reson., 98, 207–216.

    Google Scholar 

  • EmsleyL. and BodenhausenG. (1990) Chem. Phys. Lett., 165, 469–476.

    Google Scholar 

  • FarrowN.A., ZhangO., Forman-KayJ.D. and KayL.E. (1995) Biochemistry, 34, 868–875.

    Google Scholar 

  • FrankM.K., CloreG.M. and GronenbornA.M. (1995) Protein Sci., 4, 2605–2615.

    Google Scholar 

  • GriesingerC., SørensenO.W. and ErnstR.R. (1986) J. Chem. Phys., 85, 6837–6852.

    Google Scholar 

  • GrzesiekS., VuisterG.W. and BaxA. (1993) J. Biomol. NMR, 3, 487–493.

    Google Scholar 

  • KrivdinL.B. and DellaE.W. (1991) Prog. NMR Spectrosc., 23, 301–610.

    Google Scholar 

  • LemmonM.A., FlanaganJ.M., TreutleinH.R., ZhangJ. and EngelmanD.M. (1992) Biochemistry, 31, 12719–12725.

    Google Scholar 

  • LoganT.M., ThériaultY. and FesikS.W. (1994) J. Mol. Biol., 236, 637–648.

    Google Scholar 

  • MontelioneG.T. and WagnerG. (1989) J. Am. Chem. Soc., 111, 5474–5475.

    Google Scholar 

  • NeriD., BilleterM., WiderG. and WüthrichK. (1992) Science, 257, 1559–1563.

    Google Scholar 

  • NicholsonL.K., KayL.E., BaldisseriD.M., ArangoJ., YoungP.E., BaxA. and TorchiaD.A. (1992) Biochemistry, 31, 5253–5263.

    Google Scholar 

  • PardiA., BilleterM. and WüthrichK. (1984) J. Mol. Biol., 180, 741–751.

    Google Scholar 

  • RexrothA., SchmidtP., SzalmaS., GeppertT., SchwalbeH. and GriesingerC. (1995) J. Am. Chem. Soc., 117, 10389–10390.

    Google Scholar 

  • SchmiederP., ThanabalV., McIntoshL.P., DahlquistF.W. and WagnerG. (1991) J. Am. Chem. Soc., 113, 6323–6324.

    Google Scholar 

  • ShakaA.J., BarkerP.B. and FreemanR. (1985) J. Magn. Reson., 64, 547–552.

    Google Scholar 

  • ShortleD. and AbeygunawardanaC. (1993) Structure, 1, 121–134.

    Google Scholar 

  • TolmanJ.R., ChungJ. and PrestegardJ.H. (1992) J. Magn. Reson., 98, 462–467.

    Google Scholar 

  • VuisterG.W. and BaxA. (1993) J. Am. Chem. Soc., 115, 7772–7777.

    Google Scholar 

  • VuisterG.W., WangA. and BaxA. (1993a) J. Am. Chem. Soc., 115, 5334–5335.

    Google Scholar 

  • VuisterG.W., YamazakiT., TorchiaD.A. and BaxA. (1993b) J. Biomol. NMR, 3, 297–306.

    Google Scholar 

  • VuisterG.W., GrzesiekS., DelaglioF., WangA.C., TschudinR., ZhuG. and BaxA. (1994) Methods Enzymol., 239, 79–105.

    Google Scholar 

  • WagnerG. (1990) Prog. Magn. Reson., 22, 101–139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacKenzie, K.R., Prestegard, J.H. & Engelman, D.M. Leucine side-chain rotamers in a glycophorin A transmembrane peptide as revealed by three-bond carbon—carbon couplings and 13C chemical shifts. J Biomol NMR 7, 256–260 (1996). https://doi.org/10.1007/BF00202043

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202043

Keywords

Navigation