Skip to main content
Log in

Determination of sugar conformations by NMR in larger DNA duplexes using both dipolar and scalar data: Application to d(CATGTGACGTCACATG)2

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

Different methods for determining sugar conformations in large oligonucleotides have been evaluated using both J-coupling and NOE data. In order to simulate COSY spectra, reliable estimates of line widths are required. We have measured T1p (=T2) values for a large number of protons of the hexadecamer d(CATGTGACGTCACATG)2 using a new two-dimensional NMR experiment (T1RHOSY) to provide baseline information for the simulations. Both DQF-COSY and P.E.COSY cross-peaks have been systematically simulated as a function of line width, digitisation and signal-to-noise ratio. We find that for longer correlation times (τ≥5 ns), where line widths are comparable to or larger than active couplings, only {ie190-1} is reasonably accurately determined (within ±1 Hz). Under these conditions, additional information is needed to determine the sugar conformation. We have used apparent distances H1′-2-H4′ and H2″-H4′, which provide a range of Ps over an interval of ca. 20°. Complete analysis of time courses for intraresidue NOEs, with and without coupling constants, has also been evaluated for determining nucleotide conformations. Whereas Ps is poorly determined in the absence of both intrasugar NOEs and coupling constants, the range of solutions is decreased when intrasugar NOEs and {ie190-2} are also available. DQF-COSY, P.E.COSY and NOESY spectra at different mixing times of the hexadecamer d(CATGTGACGTCACATG)2 were recorded at three temperatures. A detailed analysis of the NOEs and coupling constants provided estimates of the sugar conformations in the hexadecamer. At 50 °C, the sugar conformations are well determined by the scalar and dipolar data, with pseudorotation phase angles of 126–162° and mole fractions of the S conformation (fs) of 0.86±0.05. There was no statistically significant difference between fs for the purines and the pyrimidines, although there was a small tendency for Ps of the purines to be larger than those of the pyrimidines. At 25 °C, the sugar conformations were much less well determined, although the estimates of fs were the same within experimental error as at 50 °C. The experimental and theoretical results provide guidelines for the limits of conformational analysis of nucleic acids based on homonuclear NMR methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AllerhandA., ChenF. and GutowskyH.S. (1965) J. Chem. Phys., 42, 3040–3047.

    Google Scholar 

  • BaxA. and DavisD.G. (1985) J. Magn. Reson., 65, 355–360.

    Google Scholar 

  • BaxA. and LernerL. (1988) J. Magn. Reson., 79, 429–438.

    Google Scholar 

  • BorerP.N., LaPlanteS.R., KumarA., ZanattaN., MartinA., HakkinenA. and LevyG.C. (1994) Biochemistry, 33, 2441–2450.

    Google Scholar 

  • CeldaB., WidmerH., LeupinW., ChazinW.J., DennyW.A. and WüthrichK. (1989) Biochemistry, 28, 1462–1471.

    Google Scholar 

  • ConteM.R., JenkinsT.C. and LaneA.N. (1995) Eur. J. Biochem., 229, 433–444.

    Google Scholar 

  • EberstadtM., GemmeckerG., MierkeD.F. and KesslerH. (1995) Angew. Chem., Int. Ed. Engl., 34, 1671–1695.

    Google Scholar 

  • FarmerB.T., MacuraS. and BrownL.R. (1988) J. Magn. Reson., 80, 1–22.

    Google Scholar 

  • FreemanR. and HillH.D.W. (1971) J. Chem. Phys., 55, 1985–1986.

    Google Scholar 

  • GochimM., ZonG. and JamesT.L. (1990) Biochemistry, 29, 11161–11171.

    Google Scholar 

  • GriesingerC., OttingG., WüthrichK. and ErnstR.R. (1988) J. Am. Chem. Soc., 110, 7870–7872.

    Google Scholar 

  • JonesC. and LeeK.A.W. (1991) Mol. Cell. Biol., 11, 4279–4305.

    Google Scholar 

  • KoningT.M.G., BoelensR., Van derMarelG.A., VanBoomJ.H. and KapteinR. (1991) Biochemistry, 30, 3787–3797.

    Google Scholar 

  • LaneA.N., LefèvreJ.-F. and JardetzkyO. (1986) J. Magn. Reson., 66, 201–218.

    Google Scholar 

  • LaneA.N. and ForsterM.J. (1989) Eur. Biophys. J., 17, 221–232.

    Google Scholar 

  • LaneA.N. (1990) Biochim. Biophys. Acta, 1049, 189–204.

    Google Scholar 

  • LaneA.N. (1991) Carbohydr. Res., 221, 123–144.

    Google Scholar 

  • LaneA.N., FrenkielT.A. and BauerC.J. (1993) Eur. Biophys. J., 21, 425–431.

    Google Scholar 

  • LaneA.N. and FulcherT. (1995) J. Magn. Reson. Ser. B, 107, 34–42.

    Google Scholar 

  • LipariG. and SzaboA. (1982) J. Am. Chem. Soc., 104, 4546–4558.

    Google Scholar 

  • MacayaR.F., SchultzeP. and FeigonJ. (1992) J. Am. Chem. Soc., 114, 781–783.

    Google Scholar 

  • MajumdarA. and HosurR.V. (1992) Prog. NMR Spectrosc., 24, 109–158.

    Google Scholar 

  • MeersmannT. and BodenhausenG. (1995) J. Magn. Reson. Ser. A, 115, 277–282.

    Google Scholar 

  • MuellerL. (1987) J. Magn. Reson., 72, 191–196.

    Google Scholar 

  • NeuhausD., WagnerG., VasakM., KägiJ.H.R. and WüthrichK. (1985) Eur. J. Biochem., 151, 257–273.

    Google Scholar 

  • NorwoodT.J. (1995) J. Magn. Reson. Ser. A, 114, 92–97.

    Google Scholar 

  • PiottoM., SaudekV. and SklenářV. (1992) J. Biomol. NMR, 2, 661–665.

    Google Scholar 

  • PressW.H., FlanneryB.P., TeukolskyS.A. and VetterlingW.T. (1986) Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, U.K., pp. 498–546.

    Google Scholar 

  • RinkelL.J., Van derMarelG.A., VanBoomJ.H. and AltonaC. (1987) Eur. J. Biochem., 166, 87–101.

    Google Scholar 

  • RinkelL.J. and AltonaC. (1987) J. Biomol. Struct. Dyn., 4, 621–649.

    Google Scholar 

  • SchmitzU., ZonG. and JamesT.L. (1990) Biochemistry, 29, 2357–2368.

    Google Scholar 

  • SchmitzU., SethsonI., EganW.M. and JamesT.L. (1992) J. Mol. Biol., 227, 510–531.

    Google Scholar 

  • SchultzeP., SmithF.W. and FeigonJ. (1994) Structure, 2, 221–233.

    Google Scholar 

  • SearleM. (1993) Prog. NMR Spectrosc., 25, 403–480.

    Google Scholar 

  • SmithS.A., LevanteT.O., MeierB.H. and ErnstR.R. (1994) J. Magn. Reson. Ser. A, 106, 75–105.

    Google Scholar 

  • StatesD.J., HaberkornR.A. and RubenD.J. (1982) J. Magn. Reson., 48, 286–292.

    Google Scholar 

  • TassiosP.T. and LaThangueN.B. (1990) New Biologist, 2, 1123–1134.

    Google Scholar 

  • TroppJ. (1980) J. Chem. Phys., 72, 6035–6043.

    Google Scholar 

  • Van deVenF.J.M. and HilbersC.W. (1988) Eur. J. Biochem., 178, 1–38.

    Google Scholar 

  • VanDuynhovenJ.P.M., GoudriaanJ., HilbersC.W. and WijmengaS.S. (1992) J. Am. Chem. Soc., 114, 10055–10056.

    Google Scholar 

  • VanWijkJ., HuckriedeB.D., IppelJ.H. and AltonaC. (1992) Methods Enzymol., 211, 286–306.

    Google Scholar 

  • WijmengaS.S., MoorenM.M.W. and HilbersC.W. (1993) In NMR of Macromolecules. A Practical Approach (Ed., RobertsG.C.K.), IRL Press, Oxford, U.K., pp. 217–288.

    Google Scholar 

  • WüthrichK. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York, NY.

    Google Scholar 

  • ZhuL., ReidB.R., KennedyM. and DrobnyG.P. (1994) J. Magn. Reson. Ser. A, 111, 195–202.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conte, M.R., Bauer, C.J. & Lane, A.N. Determination of sugar conformations by NMR in larger DNA duplexes using both dipolar and scalar data: Application to d(CATGTGACGTCACATG)2 . J Biomol NMR 7, 190–206 (1996). https://doi.org/10.1007/BF00202036

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202036

Keywords

Navigation