Skip to main content
Log in

The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation

  • Published:
Trees Aims and scope Submit manuscript

Abstract

The vessel areas of ten beech trees growing on a dry site were measured separately for all tree rings using automatic image analysis. These data were correlated with the monthly amount of precipitation from the July prior to the growing season until the August of the current growing season. It is evident that vessel formation at the beginning of cambial activity is mainly controlled by internal factors. The rainfall in the previous summer and autumn and in the contemporary May had only a slight influence. Vessel formation towards the end of the cambial activity is strongly influenced by the July rainfall and is thus determined to a greater degree by external factors. These results are discussed on the basis of hypotheses of tree physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aloni R (1987) Differentiation of vascular tissues. Annu Rev Plant Physiol 38: 179–204

    Google Scholar 

  • Aloni R (1991) Wood formation in deciduous hardwood trees. In: Raghavendera AS (ed) Physiology of trees. Wiley, New York, pp 175–197

    Google Scholar 

  • Aloni R (1992) The control of vascular differentiation. Int J Plant Sci 153: 90–92

    Google Scholar 

  • Aloni R, Zimmermann MH (1983) The control of vessel size and density along the plant axis — a new hypothesis. Differentiation 24: 203–208

    Google Scholar 

  • Bosshard HH, Kucera LJ (1973) Die 3-dimensionale Strukturanalyse des Holzes. I. Die Vernetzung des Gefäßsystemes in Fagus sylvatica L. Holz Roh-Werkst 31: 437–445

    Google Scholar 

  • Boyer JS (1985) Water transport. Annu Rev Plant Physiol 36: 473–516

    Google Scholar 

  • Catesson AM (1989) Specific characters of vessel primary walls during the early stages of wood differentiation. Biol Cell 67: 221–226

    Google Scholar 

  • Conkey LE (1986) Red spruce tree-ring width and densities in eastern North America as indicators of past climate. Quaternary Res 26: 232–243

    Google Scholar 

  • Denne MP, Dodd RS (1981) The environmental control of xylem differentiation. In: Barnett JR (ed) Xylem cell development. Castle House, Kent, pp 236–255

    Google Scholar 

  • Dodd RS (1984) Radial and tangential diameter variation of wood cells within trees of Acer pseudoplatanus. IAWA Bull 5: 253–257

    Google Scholar 

  • Dörffling K (1986) Growth. Prog Bot 48: 167–181

    Google Scholar 

  • Doley D, Leyton L (1968) Effects of growth regulation substances and water potential on the development of secondary xylem in Fraxinus. New Phytol 67: 579–594

    Google Scholar 

  • Dünisch O, Bauch J (1992) Fichtenerdkulturen als Modellsysteme für den Nachweis exogener Einflüsse auf das Baumwachstum. In: Michaelis W, Bauch J (eds) Luftverunreinigungen und Waldschäden am Standort “Postturm”, Forstamt Farchau/Ratzeburg. GKSS-Forschungszentrum, Geesthacht, GKSS 92/E/100: 427–448

    Google Scholar 

  • Eckstein D, Schmidt B (1974) Dendroklimatologische Untersuchungen an Stieleichen aus dem maritimen Klimagebiet Schleswig-Holstein. Angew Bot 48: 371–383

    Google Scholar 

  • Eckstein D, Frisse E, Quiehl F (1977) Holzanatomische Untersuchungen zum Nachweis anthropogener Einflüsse auf die Umweltbedingungen einer Rotbuche. Angew Bot 51: 47–56

    Google Scholar 

  • Ellenberg H (1986) Vegetation Mitteleuropas mit den Alpen in ökologischer Sicht. Ulmer, Stuttgart

    Google Scholar 

  • Esau K (1977) Anatomy of seed plants. Wiley, New York

    Google Scholar 

  • Ford ED, Robards AW, Piney MD (1978) Influence of environmental factors on cell production and differentiation in the early-wood of Picea sitchensis. Ann Bot 42: 683–692

    Google Scholar 

  • Frisse E (1977) Xylometrische und dendroklimatologische Untersuchungen über den Einfluss von Temperatur und Niederschlag auf Eichen und Buchen. Dissertation, University of Hamburg

  • Fritts HC (1976) Tree rings and climate. Academic Press, London

    Google Scholar 

  • Gard W, Eckstein D, Petersen A, Bandermann U (1988) Holzbiologische Untersuchungen über Sanierungsmassnahmen an Hamburger Parkanlagen. Naturschutz Landschaftspfl Hamburg 22: 229–288

    Google Scholar 

  • Gasson P (1987) Some implications of anatomical variations in wood of pedunculate oak (Quercus robur L.), including comparison with common beech (Fagus sylvatica L.). IAWA Bull 8: 149–166

    Google Scholar 

  • Glavac V, Koenies H, Ebben U (1990) Auswirkung sommerlicher Trockenheit auf die Splintholz-Wassergehalte im Stammkörper der Buche (Fagus sylvatica L.). Holz Roh-Werkst 48: 437–441

    Google Scholar 

  • Huehn M, Kleinschmit J, Svolba J (1987) Some experimental results concerning age dependency of different components of variance in testing Norway spruce [Picea abies (L.) Karst.] clones. Silvae Genet 36: 68–71

    Google Scholar 

  • Knigge W, Schulz H (1961) Einfluss der Jahreswitterung 1959 auf Zellartenverteilung, Faserlänge und Gefässweite verschiedener Holzarten. Holz Roh-Werkst 19: 293–303

    Google Scholar 

  • Lachaud S (1989a) Some aspects of phytohormonal participation in the control of cambial activity and xylogenesis in tree stems. Ann Sci For 46: 273–276

    Google Scholar 

  • Lachaud S (1989b) Participation of auxin and abscisin-acid in the regulation of seasonal variations of cambial activity and xylogenesis. Trees 3: 125–137

    Google Scholar 

  • Little CHA, Savidge RA (1987) The role of plant growth regulators in forest tree cambial growth. Plant Growth Regulation 6: 137–169

    Google Scholar 

  • Little CHA, Sundberg B (1991) Tracheid production in response to indole-3-acetic acid varies with internode age in Pinus sylvestris stems. Trees 5: 101–106

    Google Scholar 

  • Munting AJ, Willemse MTM (1987) External influences on development of vascular cambium and its derivatives. Phytomorphology 37: 261–274

    Google Scholar 

  • Park WK (1990) Development of anatomical tree-ring chronologies from Southern Arizona conifers using image analysis. Dissertation, University of Arizona, Tucson

    Google Scholar 

  • Priestley JH, Scott LI, Malins ME (1935) Vessel development in the angiosperm. Proc Leeds Phil Soc 3: 42–54

    CAS  PubMed  Google Scholar 

  • Ray PM, Green PB, Cleland R (1972) Role of turgor in plant cell growth. Nature 239: 163–164

    Google Scholar 

  • Sass U, Eckstein D (1992) The annual vessel area of beech as an ecological indicator. Lundqua Report 34: 281–285

    Google Scholar 

  • Sass U, Eckstein D (1994) Preparation of large thin sections and surfaces of wood for automatic image analysis. Holzforschung 48: 117–118

    Google Scholar 

  • Schweingruber FH (1993) Jahrringe und Umwelt — Dendroökologie. Birmensdorf

  • Stark N (1992) The effect of water and multi-nutrient stress on xylem sap chemistry, photosynthesis and transpiration of seedlings of two Eucalyptus. Trees 6: 7–12

    Google Scholar 

  • Stieber J (1985) Wave nature and a theory of cambial activity. Can J Bot 63: 1942–1950

    Google Scholar 

  • Teissier du Cros E (1981) Le hêtre. Institute National de la Recherche Agronomique, Département des Recherches Forestières INRA, Paris

    Google Scholar 

  • Vaganov EA (1990) The tracheidogram method in tree-ring analysis and its application. In: Cook ER, Kairiukstis LA (eds) Methods of dendrochronology. Applications in the environmental sciences. Kluwer, Dordrecht, pp 63–76

    Google Scholar 

  • Wilpert K von (1991) Intra-annual variation of radial tracheid diameters as monitor of site specific water stress. Dendrochronologia 9: 95–113

    Google Scholar 

  • Woodcock DW (1989) Climate sensitivity of wood-anatomical features in a ring-porous oak (Quercus macrocarpa). Can J For Res 19: 639–644

    Google Scholar 

  • Wolter KE (1968) A new method of working xylem growth. For Sci 14: 102–104

    Google Scholar 

  • Zahner R (1968) Water deficits and growth of trees. In: Kozlowski TT (ed) Water deficits and plant growth. Academic Press, New York, pp 191–254

    Google Scholar 

  • Z'Graggen S (1992) Dendrohistometrisch-klimatologische Untersuchung an Buchen Fagus silvatica L. Dissertation, University of Basel

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sass, U., Eckstein, D. The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation. Trees 9, 247–252 (1995). https://doi.org/10.1007/BF00202014

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00202014

Key words

Navigation