Skip to main content
Log in

Biological sulphate reduction

  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Sulphate is reduced to thiols by micro-organisms and plants and these are incorporated via amino acids into protein. Higher animals however do not utilize sulphate and get their sulphur thiol groups usually from amino acids. Some bacteria also use sulphate as an alternative to oxygen as a hydrogen acceptor. Biochemical evidence suggests that sulphate is first activated by adenosine triphosphate (ATP) before it is reduced. Two sulphur-containing nucleotides, adenosine-5′-phosphosulphate (APS) and adenosine-3′-phosphate 5′ phosphosulphate (PAPS) have been identified as carriers of sulphur in bacteria and in green plants during sulphate reduction. Enzymes associated with sulphate and sulphite reduction in bacteria and in green plants are described in this paper, and ecological and economic aspects of the dissimilation of sulphate by bacteria are also considered.

Zusammenfassung

Bestimmte Mikroorganismen und Pflanzen reduzieren Sulfate zu Thiolen und diese werden über Aminosäuren in Proteine eingebaut. Höhere Tiere verarbeiten kein Sulfat und erhalten ihre Mercaptan-Gruppe gewöhnlich aus Aminosäuren. Einige Bakterien verwenden Sulfate anstelle von Sauerstoff als Wasserstoff-Acceptor. Biochemische Anzeichen sprechen dafür, daß Sulfat durch Adenosintriphosphat bevor es reduziert, aktiviert wird. Zwei schwefelhaltige Nucleotide wurden als Zwischenprodukte der Sulfatreduktion in Bakterien und in grünen Pflanzen identifiziert. Es werden hier Enzyme, die mit der Sulfit-Reduktion in Bakterien und in grünen Pflanzen in Zusammenhang stehen, beschrieben. Ökologische und ökonomische Gesichtspunkte der Sulfatdissimilation durch Bakterien werden erörtert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abd-El-Malek, Y., and S. G. Rizk: Culture of Desulphovibrio desulphuricans. Nature 185, 635–636 (1960).

    Google Scholar 

  • Adams, M. E., and J. R. Postgate: On sporulation in sulphate-reducing bacteria. J. Gen. Microbiol. 24, 291–294 (1960).

    Google Scholar 

  • Asahi, T.: Sulfur metabolism in higher plants. IV. Mechanisms of sulfate reduction in chloroplasts. Biochim. Biophys. Acta 82, 58–66 (1964).

    Google Scholar 

  • —, R. S. Bandurski, and L. G. Wilson: Yeast sulfate-reducing system. II. Enzymatic reduction of protein disulfide. J. Biol. Chem. 236, 1830–1835 (1961).

    Google Scholar 

  • Barta, J.: Decontamination of industrial effluents by means of anaerobic continuous action of reducing sulphur bacteria. In International symposium on continuous culture of microorganisms, (Eds. I. Malek, K. Beran, and J. Hospodka) Prague: Czek. Acad. Sci., 391 p., 1962.

    Google Scholar 

  • —, and E. Hudcova: Factors affecting the degradation of ballast substances from citric acid production by sulphate-reducing bacteria. Folia Microbiol. (Prague) 6, 104–114 (1961).

    Google Scholar 

  • Basu, S. K., and T. K. Ghose: Bacterial sulphide production from sulphate-enriched spent distillery liquor. II. J. Biochem. Microbiol. Technol. Eng. 3, 181–197 (1961).

    Google Scholar 

  • Berner, R. A.: Experimental studies of the formation of sedimentary iron sulfides. In: Biogeochemistry of sulfur isotopes (ed. M. L. Jensen). New Haven: Yale Univ. Press, 193 p., 1962.

    Google Scholar 

  • Booth, G. H.: Sulphur bacteria in relation to corrosion. J. Appl. Bacteriol. 27, 174–181 (1964).

    CAS  PubMed  Google Scholar 

  • —, A. W. Cooper, and A. K. Tiller: Corrosion of mild steel in the tidal waters of the Thames estuary. I. Results of six-months' and one year's immersion. J. Appl. Chem. (London) 13, 211–220 (1963).

    Google Scholar 

  • Brüggemann, J., K. Schlossmann, M. Merkenschlager und M. Waldschmidt: Zur Frage des Vorkommens der Serinsulfhydrase. Biochem. Z. 335, 392–399 (1962).

    Google Scholar 

  • Butlin, K. R., S. C. Selwyn, and D. S. Wakerly: Microbial sulphide production from sulphate-enriched sewage sludge. J. Appl. Bacteriol. 23, 158–168 (1960).

    Google Scholar 

  • Campbell, L. L., and J. R. Postgate: Classification of rhe spore-forming sulphate-reducing bacteria. Bacteriol Rev. 29, 359–363 (1965).

    Google Scholar 

  • Cowie, D. B., E. T. Bolton, and M. K. Sands: Sulfur metabolism in Escherichia Coli. II. Competitive utilization of labelled and non-labelled sulfur sompounds. J. Bacteriol. 62, 63–74 (1951).

    Google Scholar 

  • Dostalek, M.: Bacterial release of oil. III. Areal distribution of the effect of nutrient injection into the deposit. Folia Microbiol. (Prague) 6, 10–17 (1961).

    Google Scholar 

  • Dreyfuss, J., and K. J. Monty: The biochemical characterization of cysteine-requiring mutants of Salmonella typhimurium. J. Biol. Chem. 238, 1019–1024 (1963).

    Google Scholar 

  • Freke, A. M., and D. Tate: Formation of magnetic iron sulphide by bacterial reduction of iron solutions. J. Biochem. Microbiol. Technol. Eng. 3, 29–39 (1961).

    Google Scholar 

  • Genovese, S.: The distribution of the H2S in the Lake of Faro (Messina) with particular regard to the presence of Red Water. In: Symposium on Marine Microbiology. (Ed. C. H. Oppenheimer) 194–204. Springfield, Illinois: Thomas, 769 p., 1963.

    Google Scholar 

  • Gregory, J. D., and P. W. Robbins: Metabolism of sulphur compounds (Sulphate metabolism). Ann. Rev. Biochem. 29, 347–364 (1960).

    Google Scholar 

  • Hedrick, H. G., C. E. Miller, J. E. Halkies, and J. E. Hildebrand: Selection of a microbial corrosion system for studying effects on structural aluminium alloys. Appl. Microbiol. 12, 197–200 (1964).

    Google Scholar 

  • Hilz, H., und M. Kittler: Enzymatische Reduktion von Sulfat zu Sulfid. Biochim. Biophys. Acta 30, 650–651 (1958).

    Google Scholar 

  • —, and F. Lipmann: The enzymatic activation of sulfate. Proc. Natl. Acad. Sci. U.S. 41, 880–890 (1955).

    Google Scholar 

  • Horowitz, N. H.: Biochemical genetics of Neurospora. Biochemical genetics of Neurospora crassa. Advances Genet. 3, 33–71 (1950).

    Google Scholar 

  • —, In: A Symposium on Amino Acid Metabolism. (Eds. W. D. McElroy and H. B. Glass) Discussion, 631–632. Baltimore: Johns Hopkins Press, 1048 p., 1955.

    Google Scholar 

  • Ishimoto, M., and T. Yagi: Sulfate-reducing bacteria. IX. Sulfite reductase. J. Biochem. (Tokyo) 49, 103–109 (1961).

    Google Scholar 

  • Ivanov, M. F.: Microbiological investigation of Carpathian sulphur deposits. I. Mikrobiologiya, 29, 109–113 (1960).

    Google Scholar 

  • —, Microbiological investigation of Carpathian sulphur deposits. II. Mikrobiologiya. 29, 242–247 (1960).

    Google Scholar 

  • Jensen, M. L.: Biogenic sulfur and sulfide deposits. In Biogeochemistry of sulfur isotopes. (Ed M. L. Jensen) 1–15. New Haven: Yale Univ. Press, 193 p., 1962.

    Google Scholar 

  • —, and N. Nakai: Sources and isotopic composition of atmospheric sulphur. Science. 134, 2102–2104 (1961).

    Google Scholar 

  • Kaplan, J. R., K. O. Emery, and S. C. Rittenburg: The distribution and isotopic abundance of sulphur in recent marine sediments off southern California. Geochim. Cosmochim Acta. 27, 297–331 (1963).

    Google Scholar 

  • Lampen, J. O., R. R. Roepke, and M. J. Jones: Studies on the sulfur metabolism of Escherichia coli. III. Mutant strains of Escherichia coli unable to utilize sulfate for their complete sulfur requirements. Arch. Biochem. Biophys. 13, 55–66 (1947).

    Google Scholar 

  • Lipmann, F.: Biological sulfate activation and transfer. Science. 128, 575–580 (1958).

    Google Scholar 

  • Ochynski, F. W., and J. R. Postgate: Some biochemical differences between fresh water and salt water strains of sulphate-reducing bacteria: In: Symposium on Marine Microbiology. (C. H. Oppenheimer, Ed.) 426–441. Springfield, Illinois: Thomas 796 p., 1963.

    Google Scholar 

  • Peck, H. D.: Symposium on metabolism of inorganic compounds. V. Comparative metabolism of inorganic sulphur compounds in microorganisms. Bacteriol. Rev. 26, 67–94 (1962).

    Google Scholar 

  • Pipes, W. O.: Sludge digestion by sulphate-reducing bactéia. Purdue Univ. Eng. Bull. Ext. Ser. 105, 308–319 (1960).

    Google Scholar 

  • Postgate, J. R.: Sulphate reduction by bacteria. Ann. Rev. Microbiol. 13, 505–520 (1959).

    Google Scholar 

  • — The economic activities of sulphate-reducing bacteria. Progr. Ind. Microbiol. 2, 49–69 (1960).

    Google Scholar 

  • — Cytochrome C3. In International Symposium on Haematin Enzymes. Pt. 2, 407–414. (Eds. J. E. Falk, R. Lemberg, and R. K. Morton). London: Pergamon Press, 608 p., 1961.

    Google Scholar 

  • — The Microbiology of corrosion. In: Corrosion, Vol. 1. Corrosion of Metals and Alloys (Ed. L. L. Shrier) 2–51 to 2–64. London: Newnes, 9–54 p., 1963.

    Google Scholar 

  • — Recent advances in the study of the sulphate-reducing bacteria. Bacteriol. Rev. 29, 425–441 (1965).

    Google Scholar 

  • Roberts, R. B., P. H. Abelson, D. B. Cowie, E. T. Bolton, and R. J. Britten: Sulfur Metabolism. In: Studies of Biosynthesis in Escherichia coli, 318–405. Washington: Carnegie Inst. Publ. 607, 521 p., 1955.

    Google Scholar 

  • Russell, P.: Microbiological studies in realtion to moist groundwood pulp. Chem. Ind. (London) 642–649 (1961).

  • Schiff, J. A.: Studies of sulfate utilization by algae. II. Further identification of reduced compounds formed from sulfate by Chlorella. Plant Physiol. 39, 176–179 (1964).

    Google Scholar 

  • Schneider, J. F., and J. Westley: Direct incorporation of thiosulfate sulfur into cysteine by lysed rat liver mitochondria. J. Biol. Chem. 238, PC 3516–3517 (1963).

    Google Scholar 

  • Senez, J. C.: Role écologique des bacteries sulfat o-reductrices. Pubbl. Staz. Zool. Napoli 32, 427–441 (1962).

    Google Scholar 

  • — Some considerations on the energetics of bacterial growth. Bacteriol. Rev. 26, 95–107 (1962).

    Google Scholar 

  • Singer, T. P., and E. B. Kearney: Enzymatic pathways in the degradation of sulfur-containing amino acids. In: A Symposium on Amino Acid Metabolism (Eds. W. D. McElroy and H. B. Glass) 558–590. Baltimore: Johns Hopkins Press, 1048 p., 1955.

    Google Scholar 

  • Sorokin, Y. I.: Experimental study of bacteria-induced sulphate reduction in the Black Sea using S35. Mikrobiologiya 31, 402–410 (1962).

    Google Scholar 

  • Starkey, R. L.: Sulfate-reducing bacteria, their production of sulfide and their economic importance. Tappi 44, 493–496 (1961).

    Google Scholar 

  • Sukow, R., and W. Schwartz: Redox conditions and precipitation of iron and copper in sulphu reta. In: Symposium on Marine Microbiology (Ed. C. H. Oppenheimer) 187–193. Springfield, Illinois: Thomas, 769 p., 1963.

    Google Scholar 

  • Takawa, K., and D. I. Arnon: Ferridoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature. 195, 537–541 (1962).

    Google Scholar 

  • Torii, K., and R. S. Bandursky: A possible intermediate in the reduction of 3′-phosphoryl-5′-adenosine phosphosulfate to sulfite. Biochem. Biophys. Res. Commun. 14, 537–542 (1964).

    Google Scholar 

  • — R. S. Bandursky Yeast sulfate-reducing system. III. An intermediate in the reduction of 3′-phosphoryl-5′-adenosine phosphosulfate to sulfite. Biochim. Biophys. Acta, 136, 286–295 (1967).

    Google Scholar 

  • Valentine, R. C., and R. S. Wolfe: Role of ferredoxin in the metabolism of molecular hydrogen. J. Bacteriol. 85, 1114–1120 (1963).

    Google Scholar 

  • Wilson, L. G.: Metabolism of sulfate: Sulfate reduction. Ann. Rev. Plant Physiol. 13, 201–224 (1962).

    Google Scholar 

  • —, T. Asahi, and R. S. Bandurski: Yeast sulfate-reducing system. I. Reduction of sulfate to sulfite. J. Biol. Chem. 236, 1822–1829 (1961).

    Google Scholar 

  • —, and R. S. Bandurski: Enzymatic reactions involving sulfate, sulfite, selenate, and molybdate. J. Biol. Chem. 233, 975–981 (1958).

    Google Scholar 

  • Wood, E. C.: Some chemical and bacteriological aspects of East Anglian waters. Proc. Soc. Water Treat. Exam. 10, 82–90 (1961).

    Google Scholar 

  • Zobell, C. E.: The ecology of sulfate-reducing bacteria. In: Sulfate reducing bacteria, their relation to the secondary recovery of oil, 1–24. New York: St. Bonaventure Univ. 1958.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholas, D.J.D. Biological sulphate reduction. Mineral. Deposita 2, 169–180 (1967). https://doi.org/10.1007/BF00201913

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201913

Keywords

Navigation