Skip to main content

Diamond genesis — A synthesis of opposing views

Abstract

Estimates of the pressure and temperature in the region of kimberlite magma generation are compatible with the formation of diamond in its own thermodynamic stability field as deduced from high pressure experimental synthesis of diamond. However, if diamond growth is allowed only within its stability field, preservation during ascent of kimberlite magma and many properties of diamond distribution in kimberlite pipes as well as some of the geochemical properties of diamond are very difficult to explain. Metastable diamond growth in the laboratory is well established and its occurrence in natural systems is proposed. A theory of genesis with synthesis of diamond seed nucleii in kimberlite magma at depth in the mantle and with continued metastable growth during ascent and in kimberlite magma pools at the base of the crust is proposed. Eruption of kimberlite pipes to the surface terminates diamond growth.

Résumé

Les estimations de la pression et de la température dans la région de formation du magma kimberlitique sont compatibles avec la formation du diamant dans son propre domaine de stabilité thermodynamique comme déduit des données obtenues par la synthèse du diamant à haute pression. Néanmoins, en admettant la croissance du diamant seulement dans son propre domaine de stabilité, il est très difficile d'expliquer sa preservation pendant l'ascension du magma kimberlitique, beaucoup de ses caractéristiques de répartition dans les pipes kimberlitiques ainsi que certaines propriétés géochimiques. L'évolution du diamant métastable en laboratoire est bien connue et nous suggérons donc l'existence de cet état dans les systèmes naturels. On propose une théorie envisageant la formation du diamant en partant d'une synthèse de noyaux de germes de diamant dans le magma kimberlitique à profondeur dans le manteau suivie d'une évolution métastable continuelle pendant l'ascension de ce magma kimberlitique et dans les chambres magmatiques à la base de la croûte terrestre. L'éruption des pipes kimberlitiques à la surface termine la croissance du diamant.

This is a preview of subscription content, access via your institution.

References

  1. Angus, J. C., Will, H. A., Stanko, W. S.: Growth of diamond seed crystals by vapour deposition. J. Appl. Phys. 39, 2915–2922 (1968).

    Google Scholar 

  2. Arsenyev, A. A.: The laws of the distribution of kimberlites in the eastern part of the Siberian platform. Dokl. Akad. Nauk S.S.S.R., Earth Sci. Sect. 137, 355–357 (1961).

    Google Scholar 

  3. Bardet, M. G.: Diamantiferous diatremes. Econ. Geol. 60 827–829 (1965).

    Google Scholar 

  4. Boyd, F. R.: Electronprobe study of diopsidic pyroxenes from kimberlites. Carnegie Inst. Wash. Yb. 66, 252–260 (1967).

    Google Scholar 

  5. England, J. L.: The system enstatite-pyrope. Carnegie Inst. Wash. Yb. 63, 159–161 (1964).

    Google Scholar 

  6. Brinkman, J. A.: U. S. Patent No. 3, 142, 539, July 28, 1964.

  7. Bundy, F. P., Bovenkerk, H. P., Strong, H. M., Wentorf, R. J., Jr.: Diamond-graphite equilibritum line from the growth and graphitization of diamond. J. Chem. Phys. 35, 383–391 (1961).

    Google Scholar 

  8. Bunting, E. N., van Valkenburg, A.: Some properties of diamond. Am. Mineralogist 43, 102–106 (1958).

    Google Scholar 

  9. Chesley, F. G.: Investigation of the minor elements in diamond. Am. Mineralogist 27, 20–36 (1942).

    Google Scholar 

  10. Chrenko, R. M., McDonald, R. S., Darrow, K. A.: Infra-red spectra of diamond coat. Nature 213, 474–476 (1967).

    Google Scholar 

  11. Clark, S. P. Jr., Ringwood, A. E.: Density distribution and constitution of the mantle. Rev. Geophys. 2, 35–88 (1964).

    Google Scholar 

  12. Crockett, R. N., Mason, R.: Foci of mantle disturbance in Southern Africa and their economic significance. Econ. Geol. 63, 532–540 (1968).

    Google Scholar 

  13. Dachille, F., Roy, R.: High pressure phase transformations in the laboratory-I-Mechanical mixers and mortars. Nature 186, 34 (1960).

    Google Scholar 

  14. Davidson, C. F.: On diamantiferous diatremes. Econ. Geol. 59, 1368–1380 (1964).

    Google Scholar 

  15. — The so-called cognate xenoliths of kimberlite. In: Ultramafic and Related Rocks, p. 342–346 Ed. Wyllie, P. J. New York: John Wiley and Sons 1967.

    Google Scholar 

  16. Davis, B. T. C., Boyd, F. R.: The join Mg2Si2O6-CaMg Si2O6 at 30 kb. pressure and its application to pyroxenes from kimberlites. J. Geophys. Res. 71, 3567–3576 (1966).

    Google Scholar 

  17. Dawson, J. B.: A review of the geology of kimberlite. In: Ultramafic and Related Rocks, p. 241–251; Ed. Wyllie, P. J. New York: John Wiley and Sons 1967.

    Google Scholar 

  18. — Recent researches on kimberlite and diamond geology. Econ. Geol. 63, 504–511 (1968).

    Google Scholar 

  19. Decarli, P. S.: Shock wave synthesis of high pressure phases; comments on the origin of meteoritic diamond. In: Science and Technology of Industrial Diamonds, Vol. 1., p. 49–63; Ed. Burls, J. London: Industrial Diamond Inform. Bur. 1967.

    Google Scholar 

  20. Deryagin, B. V., Bailov, L. L., Zubkov, V. M., Kochergina, A. A., Fedosev, D. V.: Filamentary diamond crystals. Soviet Phys. Cryst. (English Transl.) 14, 449–450 (1969a).

    Google Scholar 

  21. Fedosev, D. V., Luk'yanovich, V. M., Spitsyn, B. V., Ryabov, V. A., Lavrent'ev, A. V.: Diamond whiskers. Soviet Phys. “Doklady” (English Transl.) 13, 783–785 (1969b).

    Google Scholar 

  22. Dyble, T. J.: The morphology of vapour grown diamond. M. Sc. Thesis Case Western Reserve Univ., Cleveland, Ohio (1969).

  23. Evans, T., Phally, R.: Imperfections in Type I and Type II diamonds: Proc. Roy. Soc. (London), Ser. A 270, 538–552 (1962).

    Google Scholar 

  24. Eversole, D.: U. S. Patent Nos. 3,030,187 and 3,030,188 Canadian Patent No. 628,567 October 3, 1962.

  25. Fourie, G. P.: Die diamantvoorkomste in die omgewing von Swartruggens Transvaal. Geol. Surv. S. Africa, Bull. 26, 16 (1958).

    Google Scholar 

  26. Frank, F. C.: Defects in diamond. In: Science and Technology of Industrial Diamonds, Vol. 1, p. 119–135; Ed. Burls, J. London: Industrial Diamond Inform. Bur. 1967.

    Google Scholar 

  27. Freedman, M. S.: Gold radioactivity in neutron irradiated diamond. J. Chem. Phys. 20, 1040 (1952).

    Google Scholar 

  28. French, B. M.: Some geological implications of equilibrium between graphite and a C-H-O gas phase at high temperatures and pressures. Rev. Geophys. 4, 223–253 (1966).

    Google Scholar 

  29. Giardini, A. A., Tydings, J. E.: Diamond synthesis. Am. Mineralogist 47, 1393–1421 (1962).

    Google Scholar 

  30. Grantham, D. R., Allen, J. B.: Kimberlite in Sierre Leone. Overseas Geol. Mineral Resources (G. Brit.) 8, 5–25 (1960).

    Google Scholar 

  31. Green, D. H., Ringwood, A. E.: The stability fields of aluminous pyroxene peridotite and garnet peridotite and their relevance in upper mantle structure. Earth Planet. Sci. Letters 3, 151–160 (1967).

    Google Scholar 

  32. Harriss, J. W., Henriques, R. C., Meyer, H. O. A.: Orientation of silicate mineral inclusions in natural diamonds. In: Growth of Crystals, Vol. 7, p. 99–104; Ed. Sheftal, N. N. New York: Consultants Bureau Inc. 1969.

    Google Scholar 

  33. Milledge, H. J., Barron, T. H. K., Munn, R. W.: Thermal expansion of garnets included in diamond. J. Geophys. Res. 75, 5775–5792 (1970).

    Google Scholar 

  34. Heinrich, E. W.: The Geology of Carbonatites, p. 555. Chicago: Rand McNally and Co. 1966.

    Google Scholar 

  35. Holland, H. D.: Some applications of thermochemical data to problems of ore deposits. I. Stability relations among the oxides, sulfides, sulfates and carbonates of ore and gangue minerals. Econ. Geol. 54, 184–233 (1959).

    Google Scholar 

  36. Kaiser, W., Bond, W. L.: Nitrogen; a major impurity in common Type I diamond. Phys. Rev. 115, 857–863 (1959).

    Google Scholar 

  37. Kennedy, G. C., Nordlie, B. E.: The genesis of diamond deposits. Econ. Geol. 63, 495–503 (1968).

    Google Scholar 

  38. Krauskopf, K. B.: The heavy metal content of magmatic vapour at 600 °C. Econ. Geol. 52, 786–807 (1957).

    Google Scholar 

  39. Lebedev, A. P.: Kimberlites of northeastern U.S.S.R. and allied problems. Liverpool Manchester Geol. J. 4, 87–104 (1964).

    Google Scholar 

  40. Trofimov, D. D.: Diamantiferous diatremes. Econ. Geol. 61, 784–786 (1966).

    Google Scholar 

  41. Lightowlers, E. C.: Chemical impurity measurements on diamond by activation analysis. In: Science and Technology of Industrial Diamonds Vol. 1, p. 27–29; Ed. Burls, J. London: Industrial Diamond Inform. Bur. 1967.

    Google Scholar 

  42. Lindsley, D. H., Munoz, J. L.: Ortho-clino inversion in ferrosilite. Carnegie Inst. Wash. Yb 67, 86 (1968).

    Google Scholar 

  43. Lonsdaley, K., Milledge, H. J.: X-ray diffraction studies on diamond and some related minerals. In: Physical Properties of Diamond, p. 12–68; Ed. Berman, R. Oxford: University Press 1965.

    Google Scholar 

  44. MacGregor, I. D.: Mineralogy of model mantle compositions. In: Ultramafic and Related Rocks p. 382–392; Ed. Wyllie, P. J. New York: John Wiley and Sons 1967.

    Google Scholar 

  45. Meyer, H. O. A.: Mineral inclusions in diamonds. Carnegie Inst. Wash. Yb. 66, 446–450 (1967).

    Google Scholar 

  46. — Chrome pyrope: an inclusion in natural diamond. Science 160, 1446–1447 (1968).

    Google Scholar 

  47. Boyd, F. R.: Mineral inclusions in diamonds. Carnegie Inst. Wash. Yb. 67, 130–135 (1968).

    Google Scholar 

  48. — Crystalline inclusions in natural diamonds (abs.). Trans. Am. Geophys. Union 50, 346 (1969a).

    Google Scholar 

  49. — Inclusions in diamonds. Carnegie Inst. Wash. Yb. 68, 315–320 (1969b).

    Google Scholar 

  50. Munoz, J. L.: Effect of shearing on enstatite polymorphism. Carnegie Inst. Wash. Yb. 66, 369–370 (1967).

    Google Scholar 

  51. O'Hara, M. J.: Mineral parageneses in ultrabasic rocks. In: Ultramafic and Related Rocks p. 393–403; Ed. Wyllie, P. J. New York: John Wiley and Sons 1967.

    Google Scholar 

  52. — Mercy, E. L. P.: Petrology and petrogenesis of some garnetiferous peridotites. Trans. Roy. Soc. Edinburgh 65, 251–314 (1963).

    Google Scholar 

  53. —: On diamnatiferous diatremes. Econ. Geol. 60, 830–832 (1965).

    Google Scholar 

  54. Yoder, H. S., Jr.: Formation and fractionation of basic magmas at high pressures. Scottish J. Geol. 3, 67–117 (1967).

    Google Scholar 

  55. Petrov, V. S.: Natural origin of diamond. In: Growth of Crystals, Vol. 7, p. 105–111; Ed. Sheftal, N. V. New York: Consultants Bureau Inc. 1969.

    Google Scholar 

  56. Raal, F. A.: A spectrographic study of the minor element content of diamond. Am. Mineralogist 42, 354–361 (1957).

    Google Scholar 

  57. Roedder, E.: Liquid CO2 inclusions in olivine bearing nodules and phenocrysts from basalts. Am. Mineralogist 50, 1746–1782 (1965).

    Google Scholar 

  58. Rozhkov, I. S., Abrashev, K. K.: Research on diamond bearing kimberlite ores. Ind. Diamond Rev. 25, 297–301 (1965).

    Google Scholar 

  59. Sharp, W. E.: Pyrrhotite: a common inclusion in South African diamonds. Nature 211, 402–403 (1966).

    Google Scholar 

  60. Sobolev, N. V., Jr., Pustyntsev, V. I., Kuznetsova, I. K., Khar'kiv, A. D.: New data on the mineralogy of diamond bearing eclogite from the Mir pipe Yakutia. Intern. Geol. Rev. 12, 657–659 (1970).

    Google Scholar 

  61. Sobolev, V. S., Nay, B. S., Sobolev, N. V., Lavrent'yev, Yu. G., Pospelova, L. N.: Xenoliths of diamond-bearing pyrope serpentinite from the “Aykhal” pipe, Yakutia. Dokl. Akad. Nauk. SSSR 188, 168–170 (1969).

    Google Scholar 

  62. Sobolev, N. V. Jr., Kuznetsova, I. K.: Mineralogy of diamond bearing eclogite. Dokl. Akad. Nauk. SSSR 167, 112–115 (1966).

    Google Scholar 

  63. Stishov, S. M.: Equilibrium between coesite and the rutile-like modification of silica. Dokl. Akad. Nauk. SSSR 148, 1186–1188 (1963).

    Google Scholar 

  64. Straumanis, M. E., Aka, E. Z.: Precision determination of lattice parameters, coefficient of thermal expansion and atomic weight of carbon in diamond. J. Chem. Soc. Am. 73, 5643–5646 (1951).

    Google Scholar 

  65. Verhoogen, J.: Oxidation of iron-titanium oxides in igneous rocks. J. Geol. 70, 168–181 (1962).

    Google Scholar 

  66. Von Eckermann, H.: A comparison of Swedish, African and Russian kimberlites. In: Ultramafic and Related Rocks, p. 302–312; Ed. Wyllie, P. J. New York: John Wiley and Sons 1967.

    Google Scholar 

  67. Wakatsuk, M., Aoki, T., Takasu, S., Wakamatsu, N.: Catalysts for diamond synthesis. Chem. Abstr. 70, 109522t (1969).

    Google Scholar 

  68. Wentorf, R. H., Jr.: Diamond synthesis: In: Advances in Chemical Physics, p. 365–404; Ed. Prigogine (1965).

  69. Bovenkerk, H. P.: The origin of natural diamond. Astrophys. J. 134, 995–1005 (1961).

    Google Scholar 

  70. Williams, A. F.: The Genesis of the Diamond (2 volumes), p. 636; London: E. Benn Ltd. 1932.

    Google Scholar 

  71. Yoder, H. S. Jr., Kushiro, I.: Melting of a hydrous phase: phlogophite. Carnegie Inst. Wash. Yb. 67, 161–167 (1968).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mitchell, R.H., Crocket, J.H. Diamond genesis — A synthesis of opposing views. Mineral. Deposita 6, 392–403 (1971). https://doi.org/10.1007/BF00201895

Download citation

Keywords

  • Stability Field
  • Experimental Synthesis
  • Opposing View
  • Kimberlite Pipe
  • Geochemical Property