Skip to main content
Log in

Compartmental distribution and redistribution of abscisic acid in intact leaves

I. Mathematical formulation

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Using experimental information obtained in earlier studies on the permeabilities of mesophyll and guard-cell membranes to abscisic acid (ABA), and on stress-induced pH shifts in the apoplasm and in symplasmic compartments (Hartung et al., 1988, Plant Physiol. 86, 908–913; Hartung et al. 1990, BPGRG Monogr. 215–235), a mathematical model is presented which will permit computer analysis of the stress-induced redistribution of ABA amongst different leaf cell types (mesophyll, epidermis, guard cells, phloem cells) and their compartments (cell wall, cytosol, chloroplast stroma, vacuole). Metabolism and conjugation of ABA and its transport in the xylem and the phloem are also taken into consideration. We ask whether the stressinduced redistribution of ABA is fast and intensive enough to induce stomatal closure within a few minutes. The model can be adapted to any other weak acid or base, e.g. to other phytohormones (auxins, gibberellins), which differ from ABA, e.g. by their membrane conductances, anion permeabilities and pKa values. Our wholeleaf model can predict the time course and the compartmentation of, for example, phytohormone concentrations as a function of changing source-sink patterns (e.g. by compartmental pH shifts in the leaf lamina). An analysis of the present knowledge of the ABA physiology of leaves and studies on stress effects are presented in subsequent publications. In this communication we describe the whole-leaf model and present and discuss all necessary morphological (volumes, surfaces etc.) and physiological (pH, membrane conductances etc.) parameters of an unstressed leaf of Valerianella locusta L. We draw fundamental conclusions by comparing determined and calculated ABA concentrations in the leaf-cell compartments. We found that the model predictions are close to measured data, and we conclude that in unstressed leaves ABA is close to flux equilibrium amongst the different tissues and compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

CON:

ABA conjugates

HABA:

neutral ABA species

References

  • Baier, M., Hartung, W. (1988) Movement of abscisic acid across the plasmalemma and the tonoplast of guard cells of Valerianella locusta. Bot. Acta 101, 332–337

    Google Scholar 

  • Baier, M., Hartung, W. (1991) Movement of abscisic acid across the plasmamembrane of phloem elements of Plantago major. J. Plant Physiol. 137, 297–300

    Google Scholar 

  • Behl, R., Hartung, W. (1986) Movement and compartmentation of abscisic acid in guard cells of Valerianella locusta; effects of osmotic stress, external H+ concentration and fusicoccin. Planta 168, 360–368

    Google Scholar 

  • Blackman, P.G., Davies, W.J. (1985) Root to shoot communication in maize plants and the effect of soil drying. J. Exp. Bot. 36, 39–48

    Google Scholar 

  • Bray, E.A., Zeevaart, J.A.D. (1985) The compartmentation of ab scisic acid and β-d-glucopyranosyl-abscisate in mesophyll cells. Plant Physiol. 79, 719–722

    Google Scholar 

  • Cowan, A.K., Railton, J.D. (1986) Chloroplasts and the biosyn thesis and catabolism of abscisic acid. Plant Growth Regul. 4, 211–224

    Google Scholar 

  • Cowan, I.R., Raven, J.A., Hartung, W., Farquhar, G.D. (1982) A possible role for abscisic acid in coupling stomatal conductance and photosynthetic carbon metabolism in leaves. Aust. J. Plant Physiol. 9, 489–498

    Google Scholar 

  • Daeter, W., Hartung, W. (1990) Compartmentation and transport of abscisic acid in mesophyll cells of intact leaves of Valerianella locusta. J. Plant Physiol. 136, 306–312

    Google Scholar 

  • Daley, P.F., Raschke, K., Ball, J.T., Berry, J.A. (1989) Topography of photosynthetic activity of leaves obtained from video images of chlorophyll fluorescence. Plant Physiol. 90, 1233–1238

    Google Scholar 

  • Dörffling, K. (1983) Regulation der Stomaapertur Ein Beispiel für die Bedeutung der Hormonsynthese, Metabolisierung, Kompar timentierung und Interaktion für einen hormonal gesteuerten Prozess. Hohenheimer Arb. 129, 102–120

    Google Scholar 

  • Edwards, M.C., Bowling, D.J.F. (1986) The growth of rust germ tubes towards stomata in relation to pH gradients. Physiol. Mol. Plant Pathol. 29, 185–196

    Google Scholar 

  • Gimmler, H., Hartung, W. (1988) Low permeability of the plas mamembrane of Dunaliella parva for solutes. J. Plant Physiol. 133, 165–172

    Google Scholar 

  • Gimmler, H., Heilmann, B., Demmig, B., Hartung, W. (1981) The permeability coefficients of the plasmalemma and the chloro plast envelope of spinach mesophyll cells for phytohormones. Z. Naturforsch. 36C, 672–678

    Google Scholar 

  • Hartung, W. (1983) The site of action of abscisic acid at the guard cell plasmalemma of Valerianella locusta. Plant Cell Environ. 6, 427–429

    Google Scholar 

  • Hartung, W., Radin, J.W. (1989) Abscisic acid in the mesophyll apoplast and in the root xylem sap of water stressed plants. The significance of pH gradients. Curr. Top. Plant Biochem. Physiol. 8, 110–124

    Google Scholar 

  • Hartung, W., Slovik, S. (1991) Physicochemical properties of plant growth regulators and plant tissues determine their distribution and redistribution (Tansley Review No. 35). New Phytol. 119, 361–382

    Google Scholar 

  • Hartung, W., Gimmler, H., Heilmann, B., Kaiser, G. (1980) The site of abscisic acid metabolism in mesophyll cells of Spinacea oleracea. Plant Sci. Lett. 18, 359–364

    Google Scholar 

  • Hartung, W., Heilmann, B., Gimmler, H. (1981) Do chloroplasts play a role in absisic acid synthesis? Plant Sci. Lett. 22, 235–242

    Google Scholar 

  • Hartung, W., Radin, J.W., Hendrix, D. (1988) Abscisic acid movement into the apoplastic solution of water stressed cotton leaves: role of apoplastic pH. Plant Physiol. 86, 908–913

    Google Scholar 

  • Hartung, W., Slovik, S., Baier, M. (1990) pH changes and redistribution of ABA within the leaf under stress. In: Importance of root to shoot communication in the responses to environmental stress, pp. 215–235, Davies, W.J., Jeffcoat, B., eds. Monogr. 21, British Plant Growth Regulator Group, Wantage, UK

    Google Scholar 

  • Heldt, H.W., Werdan, K., Milovancev, M., Geller, G. (1973) Alkalization of the chloroplast stroma caused by light dependent proton flux into the thylakoid space. Biochim. Biophys. Acta 314, 224–241

    Google Scholar 

  • Kaiser, G., Weiler, E.W., Hartung, W. (1985) The intracellular distribution of abscisic acid in mesophyll cells — the role of the vacuole. J. Plant Physiol. 119, 237–245

    Google Scholar 

  • Lahr, W., Raschke, K. (1988) Abscisic acid contents and concentrations in protoplasts from guard cells and mesophyll cells of Vicia faba L. Planta 173, 528–531

    Google Scholar 

  • Larcher, W., ed. (1975) Physiological plant ecology, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lehmann, H., Glund, K. (1986) Abscisic acid metabolism — vacuolar/extravacuolar distribution of metabolites. Planta 168, 559–562

    Google Scholar 

  • Loveys, B.R., Robinson, S.P. (1987) Abscisic acid synthesis and metabolism in barley leaves and protoplasts. Plant Sci. Lett. 49, 23–30

    Google Scholar 

  • Nobel, P.S., ed. (1983) Biophysical plant physiology and ecology. W.H. Freeman & Co., New York

    Google Scholar 

  • Pfanz, H., Dietz, K.J. (1987): A fluorescence method for the determination of the apoplastic proton concentration in intact leaf tissues. J. Plant Physiol. 129, 41–48

    Google Scholar 

  • Pierce, M., Raschke, K. (1980) Correlation between loss of turgor and accumulation of abscisic acid in detached leaves. Planta 148, 174–182

    Google Scholar 

  • Slovik, S., Hartung, W. (1992a) Compartmental distribution and redistribution of abscisic acid in intact leaves. II. Model analysis. Planta 187, 26–36

    Google Scholar 

  • Slovik, S., Hartung, W. (1992b) Compartmental distribution and redistribution of abscisic acid in intact leaves. III. Analysis of the stress-signal chain. Planta 187, 37–47

    Google Scholar 

  • Touchard, P., Demarty, M., Ripoll, C., Morvan, C., Thellier, M. (1989) Estimation of ionic mobilities in flax cell walls. In: Plant membrane transport: The current position, pp. 603–606, Dainty, J., De Michelis, M.I., Marré, E., Rasi Caldogno, F., eds. Elsevier, Amsterdam New York Oxford

    Google Scholar 

  • Url, W. (1952) Unterschiede der Plasmapermeabilität in den Gewebeschichten krautiger Stengel. Physiol. Plant. 5, 135–144

    Google Scholar 

  • Weast, R.C., ed. (1975) Handbook of chemistry and physics, 56th edn, CRC press, Cleveland Ohio USA

    Google Scholar 

  • Weyers, J.D.B., Hillman, J.R. (1979) Uptake and distribution of abscisic acid in Commelina leaf epidermis. Planta 144, 167–172

    Google Scholar 

  • Zeevaart, J.A.D., Creelman, R.A. (1988) Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. 39, 439–473

    Google Scholar 

  • Ziegler, H. (1982) Flüssigkeitsstrame in Pflanzen. In: Biophysik, pp. 652–664, Hoppe, W., Lohmann, W., Markl, H., Ziegler, H., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We are grateful to Professor U. Heber (Lehrstuhl Botanik I, University of Würzburg, FRG) for stimulating discussions. This work has been performed within the research program of the Sonderforschungsbereich 251 (TP 3 and 4) of the University of Würzburg. It has been supported also by the Fonds der Chemischen Industrie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slovik, S., Baier, M. & Hartung, W. Compartmental distribution and redistribution of abscisic acid in intact leaves. Planta 187, 14–25 (1992). https://doi.org/10.1007/BF00201619

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201619

Key words

Navigation