Skip to main content
Log in

Linkage analysis of the genetic determinants of high density lipoprotein concentrations and composition: evidence for involvement of the apolipoprotein A-II and cholesteryl ester transfer protein loci

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

We have tested for evidence of linkage between the genetic loci determining concentrations and composition of plasma high density lipoproteins (HDL) with the genes for the major apolipoproteins and enzymes participating in lipoprotein metabolism. These genes include those encoding various apolipoproteins (apo), including apoA-I, apoA-II, apoA-IV, apoB, apoC-I, apoC-II, apoC-III, apoE, and apo(a), cholesteryl ester transfer protein (CETP), HDL-binding protein, lipoprotein lipase, and the low density lipoprotein (LDL) receptor. Polymorphisms of these genes, and nearby highly polymorphic simple sequence repeat markers, were examined by quantitative sib-pair linkage analysis in 30 coronary artery disease families consisting of a total of 366 individuals. Evidence for linkage was observed between a marker locus D16S313 linked to the CETP locus and a locus determining plasma HDL-cholesterol concentration (P = 0.002), and the genetic locus for apoA-II and a locus determining the levels of the major apolipoproteins of HDL, apoA-I and apoA-II (P = 0.009 and 0.02, respectively). HDL level was also influenced by the variation at the apo(a) locus on chromosome 6 (P = 0.02). Thus, these data indicate the simultaneous involvement of at least two different genetic loci in the determination of the levels of HDL and its associated lipoproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agellon LB, Walsh A, Hayek T, Moulin P, Jiang XC, Shelanski SA, Breslow JL, Tall AR (1991) Reduced high density lipoprotein cholesterol in human cholesterol ester transfer protein transgenic mice. J Biol Chem 266:101796–101801.

    Google Scholar 

  • Amos CI, Elston RC, Wilson AF, Bailey-Wilson JE (1989) A more powerful robust sib-pair test of linkage for quantitative traits. Genet Epidemiol 6:435–449.

    Google Scholar 

  • Andrew S, Theilmann J, Hedrick A, Mah D, Weber B, Hayden MR (1992) Nonrandom association between Huntington disease and two loci separated about 3 Mb on 4p16.3. Genomics 13:301–311.

    Google Scholar 

  • Berg K (1989) Impact of medical genetics on research and practices in the area of cardiovascular disease. Clin Genet 36:299–312.

    Google Scholar 

  • Boerwinkle E, Hixson JE (1990) Genes and normal lipid variations. Curr Opin Lipids 1:151–159.

    Google Scholar 

  • Boerwinkle E, Xiong W, Fourest E, Chan L (1989) Rapid typing of tandemly repeated hypervariable loci by the polymerase chain reaction: application to the apolipoprotein B 3′ hypervariable region. Proc Natl Acad Sci USA 86:212–216.

    Google Scholar 

  • Breslow JL (1989) Familial disorders of high density lipoprotein metabolism. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease, 6th edn. McGraw-Hill, New York, pp 1251–1264.

    Google Scholar 

  • Breslow JL (1991) Lipoprotein transport gene abnormalities underlying coronary heart disease susceptibility. Annu Rev Med 42:357–371.

    Google Scholar 

  • Brown ML, Inazu A, Hesler CB, Agellon LB, Mann C, Whitlock ME, Marcel YL, Milne RW, Koizumi J, Mabuchi H, Takeda R, Tall AR (1989) Molecular basis of lipid transfer protein deficiency in a family with increased high density lipoproteins. Nature 342:448–451.

    Google Scholar 

  • Carey G, Williamson J (1991) Linkage analysis of quantitative traits: increased power by using selected samples. Am J Hum Genet 49:786–796.

    Google Scholar 

  • Deeb SS, Takata K, Peng R, Kajiyama G, Albers JJ (1990) A splice-junction mutation responsible for familial apolipoprotein AII deficiency. Am J Hum Genet 46:822–827.

    Google Scholar 

  • Doolittle MH, LeBoeuf RC, Warden CH, Bee LM, Lusis AJ (1990) A polymorphism affecting apolipoprotein A-II translational efficiency determines high density lipoprotein size and composition. J Biol Chem 265:16.

    Google Scholar 

  • Doolittle MH, Durstenfeld A, Garfinkel AS, Schotz MC (1992) Triglyceride upases, hypertriglyceridemia and atherosclerosis. In: Lusis AJ, Rotter JI, Sparkes RS (eds) Molecular genetics of coronary artery disease: candidate genes and processes in atherosclerosis. Karger, Basel, pp 172–188.

    Google Scholar 

  • Drayna D, Lawn R (1987) Multiple RFLPs at the human cholesterol ester transfer protein (CETP) locus. Nucleic Acids Res 15:4698.

    Google Scholar 

  • Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR (1972) High density lipoprotein as a protective factor against coronary heart disease: the Framingham study. Am J Med 63:700–714.

    Google Scholar 

  • Graham DL, Oram JF (1987) Identification and characterization of a high density lipoprotein binding protein in cell membranes by ligand blotting. J Biol Chem 262:7435–7442.

    Google Scholar 

  • Hamsten A, Iselius L, Dahlen G, Faire U de (1986) Genetic and cultural inheritance of serum lipids, low and high density lipoprotein cholesterol and serum apolipoproteins A-I, A-II and B. Atherosclerosis 60:199–208.

    Google Scholar 

  • Haseman JK, Elston RC (1972) The investigation of linkage between a quantitative trait and a marker locus. Behav Genet 2:3–19.

    Google Scholar 

  • Hedrick CC, Castellani LW, Warden CH, Puppione DL, Lusis AJ (1993) Influence of mouse apolipoprotein A-II on plasma lipoproteins in transgenic mice. J Biol Chem 268:20676–20682.

    Google Scholar 

  • Hegele RA, Sutherland S, Robertson M, Wu L, Emi M, Hopkins PN, Williams RR, Lalouel JM (1991) The effect of genetic determinants of low density lipoprotein levels on lipoprotein(a). Clin Invest Med 14:146–152.

    Google Scholar 

  • Heiba IM, DeMeester CA, Xia YR, Diep A, George VT, Amos CI, Srinivasan SR, Berenson GA, Elston RC, Lusis AJ (1993) Genetic contributions to quantitative lipoprotein traits associated with coronary artery disease: analysis of a large pedigree from the Bogalusa Heart Study. Am J Med Genet 47:875–883.

    Google Scholar 

  • Heinzmann C, Ladias J, Antonarakis S, Diep A, Schotz M, Lusis AJ (1988) Two polymorphisms for the human hepatic lipase (HL) gene. Nucleic Acids Res 16:4739.

    Google Scholar 

  • Heinzmann C, Kirchgessner T, Kwiterovich PO, Ladias JA, Derby C, Antonarakis SE, Lusis AJ (1991) DNA polymorphism haplotypes of the human lipoprotein lipase gene: possible association with high density lipoprotein levels. Hum Genet 86:578–584.

    Google Scholar 

  • Hudson TJ, Engelstein M, Lee MK, Ho EC, Rubenfield MJ, Adams CP, Houseman DE, Dracopoli NC (1992) Isolation and chromosomal assignment of 100 highly informative human simple sequence repeat polymorphisms. Genomics 13:622–629.

    Google Scholar 

  • Humphries SE (1988) DNA polymorphisms of the apolipoprotein genes — their use in the investigation of the genetic component of hyperlipidemia and atherosclerosis. Atherosclerosis 72:89–108.

    Google Scholar 

  • Hunt SC, Hasstedt SJ, Kuida H, Stults BM, Hopkins PN, Williams RA (1989) Genetic heritability and common environmental components of resting and stressed blood pressures, lipids and body mass index in Utah pedigrees and twins. Am J Epidemiol 129:625–638.

    Google Scholar 

  • Inazu A, Brown ML, Hesler CB, Agellon LB, Koizumi J, Takata K, Maruhama Y, Mabuchi H, Tall AR (1990) Increased high density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation. N Engl J Med 323:1234–1238.

    CAS  PubMed  Google Scholar 

  • Karathanasis S (1992) Lipoprotein metabolism: high density lipoproteins. In: Lusis AJ, Rotter JI, Sparkes RS (eds) Molecular genetics of coronary artery disease: candidate genes and processes in atherosclerosis. Karger, Basel, pp 140–171.

    Google Scholar 

  • Kerem BS, Rommens JM, Buchnan JA, Markiewicz D, Cox TK, Chakravarti A, Buchwald M, Tsui LC (1989) Identification of the cystic fibrosis gene: genetic analysis. Science 245:1073–1080.

    Google Scholar 

  • Kessling A, Ovellette S, Bouffard O, Chamberland A, Bétard C, Selinger E, Xhignesse M, Lussier-Cacan S, Davignon J (1991) Patterns of association between genetic variability in apolipoprotein (apo) B, apo AI-CIII-AIV and cholesterol ester transfer protein gene regions and quantitative variation in lipid and lipoprotein traits: influence of gender and exogenous hormones. Am J Hum Genet 50:92–106.

    Google Scholar 

  • Kondo I, Berg K, Drayna D, Lawn R (1989) DNA polymorphism at the locus for human cholesterol ester transfer protein (CETP) is associated with high density lipoprotein cholesterol and apolipoprotein levels. Clin Genet 35:49–56.

    Google Scholar 

  • Lackner CE, Boerwinkle E, Leffert CC, Rahmig T, Hobbs HH (1991) Molecular basis of apolipoprotein(a) isoform size heterogeneity as revealed by pulsed-field gel electrophoresis. J Clin Invest 87:2077–2086.

    Google Scholar 

  • Lathrop GM, Lalouel JM, Julier C, Ott J (1984) Strategies for multilocus linkage analysis in humans. Proc Natl Acad Sci USA 81:3443–3446.

    Google Scholar 

  • Lusis AJ (1988) Genetic factors affecting blood lipoproteins: the candidate gene approach. J Lipid Res 29:397–429.

    Google Scholar 

  • Mehrabian M, Qiao J-H, Hyman R, Ruddle D, Laughton C, Lusis AJ (1993) Influence of the apoA-II gene locus on HDL levels and fatty streak development in mice. Arterioscl Thromb 13:1–10.

    Google Scholar 

  • Mehrabian M, Lusis AJ (1992) Genetic markers for studies of atherosclerosis and related traits. In: Lusis AJ, Rotter JI, Sparkes RS (eds) Molecular genetics of coronary artery disease: candidate genes and processes in atherosclerosis. Karger, Basel, pp 363–418.

    Google Scholar 

  • Miller NE (1987) Associations of high-density lipoprotein subclasses and apolipoproteins with ischemic heart disease and coronary atherosclerosis. Am Heart J 113:589–597.

    Google Scholar 

  • Moll PP, Sing CF, Williams RR, Mao SJT, Kottke BA (1986) The genetic determination of plasma apolipoprotein A-I levels measured by radioimmunoassay: a study of high-risk pedigrees. Am J Hum Genet 38:361–372.

    Google Scholar 

  • Plump AS, Smith JD, Hayek T, Aalto-Setälä K, Walsh A, Verstuyft JG, Rubin EM, Breslow JL (1992) Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell 71:343–353.

    Google Scholar 

  • Rao DC, Lalouel JM, Suarez BR, Schonfeld G, Glueck CJ, Siervogel RM (1983) A genetic study of hyper-alphalipoproteinemia. Am J Med Genet 15:195–203.

    Google Scholar 

  • Rubin EM, Ishida BY, Clift SM, Krauss RM (1991) Expression of human apolipoprotein A-I in transgenic mice results in reduced plasma levels of murine apolipoprotein A-I and the appearance of two new high density lipoprotein size particles. Proc Natl Acad Sci USA 88:434–438.

    Google Scholar 

  • SAGE, Statistical Analysis for Genetic Epidemiology, release 2. 1 (1992) Computer program package available from the Department of Biometry and Genetics, Louisiana State University Medical Center, New Orleans.

    Google Scholar 

  • Schaefer EJ (1984) Clinical, biochemical and genetic features in familial disorders of high density lipoprotein deficiency. Arteriosclerosis 4:303–322.

    Google Scholar 

  • Scott J, Knott TJ, Priestley LM, Robertson ME, Mann DV, Kostner G, Miller GJ, Miller NE (1985) High-density lipoprotein composition is altered by a common DNA polymorphism adjacent to apolipoprotein AII gene in man. Lancet I:771–773.

    Google Scholar 

  • Tall A (1990) Plasma high density lipoproteins: metabolism and relationship to atherogenesis. J Clin Invest 86:379–384.

    Google Scholar 

  • Tall A (1992) Metabolic and genetic control of HDL cholesterol levels. J Intern Med 231:661–668.

    Google Scholar 

  • Taramelli R, Pontoglio M, Candiani G, Ottolenghi S, Dieplinger H, Catapano A, Albers J, Vergani C, McLean J (1990) Lecithin cholesterol acyl transferase deficiency: molecular analysis of a mutated allele. Hum Genet 85:195–199.

    Google Scholar 

  • Thorn JA, Stocks J, Reichl D, Alcolado JC, Chamberlain JC, Galton D (1993) Variability of plasma apolipoprotein (apo) A-II levels associated with an apoA-II gene polymorphism in monozygotic twins. Biochem Biophys Acta 1180:299–303.

    Google Scholar 

  • Vogler GP, Wette R, Laskarzewski PM, Perry TS, Rice T, Province MA, Rao DC (1989) Heterogeneity in the biological and cultural determinants of high-density lipoprotein cholesterol in five North American populations: the Lipid Research Clinics Family Study. Hum Hered 39:249–257.

    Google Scholar 

  • Walsh A, Ito Y, Breslow JL (1989) High levels of human apolipoprotein A-I transgenic mice result in increased plasma levels of small density lipoprotein (HDL) particles comparable to human HDL3. J Biol Chem 264:6488–6494.

    Google Scholar 

  • Warden CH, Fisler JS, Pace MJ, Svenson KL, Lusis AJ (1993a) Coincidence of genetic loci for plasma cholesterol levels and obesity in a multifactorial mouse model. J Clin Invest 92:773–779.

    Google Scholar 

  • Warden CH, Hedrick CC, Qiao JH, Castellani LW, Lusis AJ (1993b) Atherosclerosis in transgenic mice overexpressing apolipoprotein A-II. Science 261:469–472.

    Google Scholar 

  • Warden CH, Daluiski A, Bu X, Purcell-Huynh DA, DeMeester C, Shieh B-H, Puppione DL, Gray RJ, Reaven GM, Chen Y-DI, Rotter JI, Lusis AJ (1993c) The apolipoprotein AII gene determines plasma apolipoprotein AII levels and free fatty acid levels in both humans and mice. Proc Natl Acad Sci USA 90:101886–101890.

    Google Scholar 

  • Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396.

    CAS  PubMed  Google Scholar 

  • Wile DB, Barbir M, Gallagher J, Myant NB, Ritchie CD, Thompson GR, Humphries SE (1989) Apolipoprotein A-I gene polymorphisms: frequency in patients with coronary artery disease and healthy controls and association with serum apoA-I and HDL-cholesterol concentration. Atherosclerosis 78:9–18.

    Google Scholar 

  • Wood S, Schertzer M, Hayden M, Ma Y (1993) Support for founder effect for two lipoprotein lipase (LPL) gene mutations in French Canadians by analysis of GT microsatellites flanking the LPL gene. Hum Genet 91:312–316.

    Google Scholar 

  • Xia YR, Klisak I, Sparkes RS, Oram J, Lusis AJ (1993) Localization of the gene for high-density lipoprotein binding protein (HDLBP) to human chromosome 2Q37. Genomics 16:524–525.

    Google Scholar 

  • Xiang K, Cox NJ, Hallewell RA, Bell GI (1987) Multiple TaqI RFLPs at the human manganese superoxide dismutase (SOD2) locus on chromosome 6. Nucleic Acids Res 15:7654.

    Google Scholar 

  • Xu CF, Angelico F, Ben MD, Humphries S (1993) Role of genetic variation at the apo AI-CIII-AIV gene cluster in determining plasma apo A-I levels in boys and girls. Genet Epidemiol 10:113–122.

    Google Scholar 

  • Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258:468–471.

    Google Scholar 

  • Zuliani G, Hobbs HH (1990a) Tetranucleotide repeat polymorphism in the apolipoprotein C-III gene. Nucleic Acids Res 18:4299.

    Google Scholar 

  • Zuliani G, Hobbs HH (1990b) Dinucleotide repeat polymorphism at the 3′ end of the LDL receptor gene. Nucleic Acids Res 18:4300.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bu, X., Warden, C.H., Xia, YR. et al. Linkage analysis of the genetic determinants of high density lipoprotein concentrations and composition: evidence for involvement of the apolipoprotein A-II and cholesteryl ester transfer protein loci. Hum Genet 93, 639–648 (1994). https://doi.org/10.1007/BF00201563

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201563

Keywords

Navigation