Skip to main content
Log in

Propagated fluctuations of the electric potential in the apoplasm of Lepidium sativum L. roots

  • Published:
Planta Aims and scope Submit manuscript

Abstract

The electric potential on the surface of the Lepidium sativum L. root apex was recorded by means of six non-polarizable electrodes. Nonevoked fluctuations of the potential with amplitudes below 0.1 mV were observed. The fluctuations could be reversibly inhibited either by ether vapor or by anoxia caused by N2. They did not occur in killed roots. Cross-correlation analysis of the fluctuations from six electrodes located one above another along the 3-mm apical region showed a pattern of time delay which indicates that the fluctuations may be the consequence of signals propagated in the root with a velocity of 3–9 mm · s−1 in a basipetal direction from the root cap. We hypothesize that the fluctuations are due to signals of an unknown nature propagated along an intrasymplasmic continuous system, the “symreticulum”, composed of the cortical ER of individual cells and desmotubules passing through the plasmodesmata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AC:

alternating current

AP:

action potential

ACF:

autocorrelation function

CCF:

cross-correlation function

DC:

direct current

EEP:

extracellular electric potential

References

  • Behrens, H.M., Gradmann, D. (1985) Electrical properties of the vertically growing root tip of Lepidium sativum L. Planta 163, 453–462

    Google Scholar 

  • Behrens, H.M., Weisenseel, M.H., Sievers, A. (1982) Rapid changes in the pattern of electric current around the root tip of Lepidium sativum L. following gravistimulation. Plant Physiol. 70, 1079–1083

    Google Scholar 

  • Behrens, H.M., Gradmann, D., Sievers, A. (1985) Membranepotential responses following gravistimulation in roots of Lepidium sativum L. Planta 163, 463–472

    Google Scholar 

  • Davies, A. (1987) Action potentials as multifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responses. Plant Cell Environ. 10, 623–631

    Google Scholar 

  • De Greef, J.A., Caubergs, R., Verbelen, J.-P., Moereels, E. (1976) Phytochrome-mediated interorgan dependency and rapid transmission of the light stimulus. In: Light and plant development, pp. 295–316, Smith, H., ed. Butterworths, London

    Google Scholar 

  • Erickson, R.O. (1986) Symplastic growth and symplasmic transport. Plant Physiol. 82, 1153

    Google Scholar 

  • Fitting, H. (1905) Untersuchungen über den geotropischen Reizvorgang. Jahrb. Wissenschaftl. Bot. 41, 221–330, 331–398

    Google Scholar 

  • Frachisse, J.-M., Desbiez, M.-O., Champagnat, P., Thellier, M. (1985) Transmission of a traumatic signal via a wave of electric depolarization, and induction of correlations between the cotyledonary buds in Bidens pilosus. Physiol. Plant. 64, 48–52

    Google Scholar 

  • Glebicki, K., Hejnowicz, Z., Pijanowski, A. (1986) Localized spontaneous fluctuations of electric potential in shoots of different plants. Acta Soc. Bot. Pol. 55, 67–76

    Google Scholar 

  • Glebicki, K., Hejnowicz, Z., Pijanowski, A. (1989) Induced fluctuations of electric potentials in the apoplast of leaves. Planta 180, 1–4

    Google Scholar 

  • Hecks, B., Hejnowicz, Z., Sievers, A. (1991) Spontaneous oscillations of extracellular electric potentials measured on Lepidium sativum L. roots. Plant Cell Environ., in press

  • Hepler, P.K., Palevitz, B.A., Lancelle, S.A., McCauley, M.M., Lichtscheidl, I. (1990) Cortical endoplasmic reticulum in plants. J. Cell Sci. 96, 355–373

    Google Scholar 

  • Ishikawa, H., Evans, M.L. (1990) Gravity induced changes in intracellular potentials in elongating cortical cells of mung bean roots. Plant Cell Physiol. 31, 457–462

    Google Scholar 

  • Karlsson, L. (1972) Nonrandom bioelectric signals in plant tissue. Plant Physiol. 49, 982–986

    Google Scholar 

  • Kniel, M. (1990) Einfluß von Cytochalasin D und apikaler Zentrifugation auf die Graviperzeption der Wurzel von Lepidium sativum L. Diploma Thesis, Bot. Inst. Univ. Bonn, Germany

    Google Scholar 

  • Mohr, H. (1988) Control of plant development: signals from without — signals from within. Bot. Mag. Tokyo 101, 79–101

    Google Scholar 

  • Oelze-Karow, H., Mohr, H. (1988) Rapid transmission of a phytochrome signal from hypocotyl hook to cotyledons in mustard (Sinapis alba L.). Photochem. Photobiol. 47, 447–450

    Google Scholar 

  • Overall, R.L., Gunning, B.E.S. (1982) Intercellular communication in Azolla roots: II. Electrical coupling. Protoplasma 111, 151–160

    Google Scholar 

  • Pickard, B.G. (1972) Spontaneous electrical activity in shoots of Ipomoea, Pisum, and Xanthium. Planta 102, 91–114

    Google Scholar 

  • Pickard, B.G. (1973) Geotropic response patterns of Avena coleoptile. I. Dependence on angle and duration of stimulation. Can. J. Bot. 51, 1003–1021

    Google Scholar 

  • Pickard, B.G. (1974) Electrical signals in higher plants. Naturwissenschaften 61, 60–64

    Google Scholar 

  • Robards, A.W., Lucas, W.J. (1990) Plasmodesmata. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 41, 369–419

    Google Scholar 

  • Sievers, A., Volkmann, D. (1972) Verursacht differentieller Druck der Amyloplasten auf ein komplexes Endomembransystem die Geoperzeption in Wurzeln? Planta 102, 160–172

    Google Scholar 

  • Sievers, A., Behrens, H.M., Buckhout, T.J., Gradmann, D. (1984) Can a Ca2+-pump in the endoplasmic reticulum of the Lepidium root be the trigger for rapid changes in membrane potential after gravistimulation? Z. Pflanzenphysiol. 114, 195–200

    Google Scholar 

  • Strömgren Allen, N., Schumm, J.H. (1990) Endoplasmic reticulum, calciosomes and their possible roles in signal transduction. Protoplasma 154, 172–178

    Google Scholar 

  • Terry, B.R., Robards, A.W. (1987) Hydrodynamic radius alone governs the mobility of molecules through plasmodesmata. Planta 171, 145–157

    Google Scholar 

  • Volkmann, D., Sievers, A. (1979) Graviperception in multicellular organs. In: Encyclopedia of plant physiology, vol. 7: Physiology of movements, pp. 573–600, Haupt, W., Feinleib, M.E., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wildon, D.C., Doherty, H.M., Eagles, G., Bowles, D.J., Thain, J.F. (1989) Systemic responses arising from localized heat stimuli in tomato plants. Ann. Bot. 64, 691–695

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by Bundesminister für Forschung und Technologie, Bonn, and Ministerium für Wissenschaft und Forschung, Düsseldorf, (AGRAVIS). We are grateful to Mr. Dipl.-Ing. P. Blasczyk for constructing the amplifiers and for advice in instrumentation, and to Mr. H. Laubach for constructing the mechanical assembly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hejnowicz, Z., Krause, E., Glebicki, K. et al. Propagated fluctuations of the electric potential in the apoplasm of Lepidium sativum L. roots. Planta 186, 127–134 (1991). https://doi.org/10.1007/BF00201508

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201508

Key words

Navigation