Skip to main content
Log in

Modeling the electroencephalogram by means of spatial spline smoothing and temporal autoregression

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A spatial-temporal model for the description of electroencephalographic (EEG) data is introduced that combines smooth reconstruction in the spatial domain and autoregressive representation in the time domain. Its spatial aspect is formulated in a general framework that covers interpolation, smoothing, and regression. Contrary to the multivariate time series models used for EEG analysis up to date, the introduced model provides a smooth spatial reconstruction of the EEG cross-spectrum, keeping the condition of nonnegative definiteness. As an instance of practical importance, the case in which the spatial reconstruction is based on spherical splines is developed in detail. Illustrative examples are presented that show the flexibility of the model to describe both normal and abnormal EEG data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blinowska KJ, Malinowski M (1991) Nonlinear and linear forecasting of the EEG time series. Biol Cybern 66:159–165

    Google Scholar 

  • Brockwell PJ, Davis RA (1991) Time series: theory and methods, 2nd edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Childers DG (1977) Evoked responses: electrogenesis, models, methodology, and wave-front reconstruction and tracking analysis. Proc. IEEE 65:611–626

    Google Scholar 

  • Duffy FH, Iyer VG, Surwillo WW (1989) Clinical electroencephalography and topographic brain mapping. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Franaszczuk PJ, Blinowska KJ, Kowalczyk M (1985) The application of parametric multichannel spectral estimates in the study of electrical brain activity. Biol Cybern 51:239–247

    Google Scholar 

  • Gersch W, Yonemoto J (1977) Parametric time series model for multivariate EEG analysis. Comp Biomed Res 10:113–125

    Google Scholar 

  • Gevins AS, Remonds A (1987) Handbook of electroencephalography and clinical neurophysiology, Vol I. Elsevier, Amsterdam

    Google Scholar 

  • Gevins AS, Brickett P, Costales B, Le J, Reutter B (1990) Beyond topographic mapping: towards functional-anatomical imaging with 124-channels EEGs and 3-D MRIs. Brain Topography 3:53–64

    Google Scholar 

  • Ingber L (1982) Statistical mechanics of neocortical interactions. Basic formulation. Physica D 5:83–107

    Google Scholar 

  • John ER, Karmel BZ, Corning WC, Easton P, Brown D, Ahn H, John M, Harmony T, Prichep L, Toro A, Gerson I, Barttlet F, Thatcher R, Kaye H, Valdes P (1977) Neurometrics: numerical taxonomy identifies different profiles of brain functions within groups of behaviorally similar people. Science 196:1393–1410

    Google Scholar 

  • Kemp B, Lopez da Silva FH (1991) Model-based analysis of neurophysiological signals. In: Weitkunat R (eds) Digital biosignal processing. Elsevier, Amsterdam, pp 129–155

    Google Scholar 

  • Kimeldorf G, Wahba G (1971) Some results on Tchebycheffian spline functions. J Math Anal Appl 33:82–95

    Google Scholar 

  • Lopes da Silva FH (1987) Dynamics of EEGs as signals of neuronal population: models and theoretical considerations. In: Niedermeyer E, Lopes da Silva FH (eds) Electroencephalography: basic principles, clinical applications and related fields. Urban & Schwarzenberg, Baltimore, pp 15–28

    Google Scholar 

  • Lopes da Silva FH (1991) Neural mechanisms underlying brain waves: from membranes to networks. Electroenceph Clin Neurophysiol 79:81–93

    Google Scholar 

  • Lopes da Silva FH, Hoeks A, Smiths H, Zetterberg LH (1974) Model of brain rhythmic activity. Kybernetik 15:27–37

    Google Scholar 

  • Nunez PL (1981) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, New York

    Google Scholar 

  • Nunez PL (1989) Generation of human EEG by a combination of long and short range neocortical interactions. Brain Topography 1:199–215

    Google Scholar 

  • Nunez PL, Kenneth LP (1991) The Spline-Laplacian in clinical neurophysiology: a method to improve EEG spatial resolution. J Clin Neurophysiol 8:397–413

    Google Scholar 

  • Pascual RD, Valdes PA, Alvarez A (1988a) A parametric model for multichannel EEG spectra. Int J Neurosci 40:89–99

    Google Scholar 

  • Pascual RD, Gonzalez S, Valdes P, Biscay R (1988b) Interpolation and imaging of electrical potential, current source density and related statistics by means of regularized spherical harmonic expansions. Int J Neurosci 43:237–247

    Google Scholar 

  • Perrin F, Pernier J, Bertrand O, Giard MH, Enchallier JF (1987) Mapping of scalp potentials by surface spline interpolation. Electroencephalogr Clin Neurophysiol 66:75–81

    Google Scholar 

  • Pinson LJ, Childers DG (1974) Frequency-wavenumber spectrum analysis of EEG multielectrode array data. IEEE Trans Biomed Eng 21:192–206

    Google Scholar 

  • Rappelsberger P, Petsche H (1975) Spectral analysis of the EEG by means of autoregression. In: Dolce G, Kunkel H (eds) CEAN-Computerized EEG analysis. Gustav Fischer, Stuttgart

    Google Scholar 

  • Soufflet L, Toussaint M, Luthringer R, Gresser J, Minot R, Macher JP (1991) A statistical evaluation of the main interpolation methods applied to 3-dimensional EEG mapping. Electroencephalogr Clin Neurophysiol 79:393–402

    Google Scholar 

  • Traub RD (1982) Simulation of intrinsic bursting in CA3 hippocampal neurons. Neurosciences 7:1233–1242

    Google Scholar 

  • Valdes P (1984) Statistical bases. In: Harmony T (eds) Functional neuroscience, Vol III. Neurometric assessment of brain dysfunction in neurological patients. Lawrence Erlbaum, NJ

    Google Scholar 

  • Valdes P, Pascual R, Jimenez JC, Carballo J, Biscay R, Gonzalez S (1988) Functionally based statistical methods for the analysis of the EEG and event related potentials. In: Willems JL, Van Bemmel JH, Michel J (eds) Progress in computer-assisted function analysis. Elsevier, Amsterdam

    Google Scholar 

  • Valdes P, Biscay R, Galan L, Bosch J, Szava S, Virues T (1990) High resolution spectral EEG norms for topography. Brain Topogr 1:281–282

    Google Scholar 

  • Valdes P, Bosch J, Grave de Peralta R, Hernandez J, Riera J, Pascual R, Biscay R (1992) Frequency domain models for the EEG. Brain Topogr 4:309–319

    Google Scholar 

  • Van Rotterdam A, Lopes da Silva FH, Van der Ende J, Viergever MA, Hermans AJ (1982) A model for the spatial-temporal characteristics of the alpha rhythm. Bull Math Biol 44:283–305

    Google Scholar 

  • Virues T, Jimenez JC, Biscay R, Diaz G, Martin MS, Paz L (1994) Analisis de las coherencias y los espectros de energia de alta resolucion en pacientes con epilepsia localizada sintomatica. Rev Neurofisiol Clin 3: (in press)

  • Wahba G (1981) Spline interpolation and smoothing on the sphere. SIAM J Sci Stat Comput 2:5–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jimenez, J.C., Biscay, R. & Montoto, O. Modeling the electroencephalogram by means of spatial spline smoothing and temporal autoregression. Biol. Cybern. 72, 249–259 (1995). https://doi.org/10.1007/BF00201488

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201488

Keywords

Navigation