Skip to main content

A neural model of basal ganglia-thalamocortical relations in normal and parkinsonian movement

Abstract

Anatomical, neurophysiological, and neurochemical evidence supports the notion of parallel basal ganglia-thalamocortical motor systems. We developed a neural network model for the functioning of these systems during normal and parkinsonian movement. Parkinson's disease (PD), which results predominantly from nigrostriatal pathway damage, is used as a window to examine basal ganglia function. Simulations of dopamine depletion produce motor impairments consistent with motor deficits observed in PD that suggest the basal ganglia play a role in motor initiation and execution, and sequencing of motor programs. Stereotaxic lesions in the model's globus pallidus and subthalamic nucleus suggest that these lesions, although reducing some PD symptoms, may constrain the repertoire of available movements. It is proposed that paradoxical observations of basal ganglia responses reported in the literature may result from regional functional neuronal specialization, and the non-uniform distributions of neurochemicals in the basal ganglia. It is hypothesized that dopamine depletion produces smaller-than-normal pallidothalamic gating signals that prevent rescalability of these signals to control variable movement speed, and that in PD can produce smaller-than-normal movement amplitudes.

This is a preview of subscription content, access via your institution.

References

  1. Alamy M, Trouche E, Nieoullon A, Legallet E (1994) Globus pallidus and motor initiation: the bilateral effects of unilateral quisqualic acid-induced lesion on reaction times in monkeys. Exp Brain Res 99:247–258

    Article  PubMed  Google Scholar 

  2. Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  PubMed  Google Scholar 

  3. Alexander GE, Crutcher M (1990) Preparation for movement: neural representations of intended direction in three motor areas of the monkey. J Neurophysiol 64:133–150

    PubMed  Google Scholar 

  4. Alexander GE, DeLong MR (1985) Microstimulation of the primate neostriatum. I. Physiological properties of striatal microexcitable zones. J Neurophysiol 53:1401–1416

    PubMed  Google Scholar 

  5. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  PubMed  Google Scholar 

  6. Anderson ME, Horak FB (1985) Influence of the globus pallidus on arm movements in monkeys. III. Timing of movement-related information. J Neurophysiol 54:433–448

    Google Scholar 

  7. Baron M, Vitek J, Turner R, Kaneoke Y, Bakay R, DeLong M (1993) Lesions in the sensorimotor region of the internal segment of the globus pallidus (GPi) in Parkinsonian patients are effective in alleviating the cardinal signs of Parkinson's disease. Soc Neurosci Abstr 19:1584

    Google Scholar 

  8. Bergman H, Wichmann T, DeLong M (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438

    PubMed  Google Scholar 

  9. Bullock D, Grossberg S (1988) Neural dynamics of planned arm movements: emergent invariants and speed-accuracy properties during trajectory formation. Psychol Rev 95:49–90

    Article  PubMed  Google Scholar 

  10. Bullock D, Grossberg S, Mannes C (1993) A neural network model for cursive script production. Biol Cybern 70:15–28

    Article  Google Scholar 

  11. Cheruel F, Dormont JF, Amalric M, Schmied A, Farin D (1994) The role of putamen and pallidum in motor initiation in the cat. I. Timing of movement-related single-unit activity. Exp Brain Res 100:250–266

    Article  PubMed  Google Scholar 

  12. Chevalier G, Deniau JM (1990) Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci 13:277–280

    Article  PubMed  Google Scholar 

  13. Contreras-Vidal JL, Teulings HL, Stelmach GE (1994) Understanding handwriting motor impairments in Parkinson's disease through neural networks. In: Proceedings of the World Congresss on Neural Networks, Vol II. INNS Press, pp 709–716

  14. DeLong MR, Wichmann T (1993) Basal ganglia-thalamocortical circuits in Parkinsonian signs. Clin Neurosci 1:18–26

    Google Scholar 

  15. DeVito JL, Anderson ME (1982) An autoradiographic study of efferent connections of the globus pallidus. Exp Brain Res 46:107–117

    Article  PubMed  Google Scholar 

  16. Fink JS (1993) Neurobiology of basal ganglia receptors. Clin Neurosci 1:27–35

    Google Scholar 

  17. Flaherty AW, Graybiel AM (1993) Output architecture of the primate putamen. J Neurosci 13:3222–3237

    PubMed  Google Scholar 

  18. Flaherty AW, Graybiel AM (1994) Input-output organization of the sensorimotor striatum in the squirrel monkey. J Neurosci 14:599–610

    PubMed  Google Scholar 

  19. Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 15:285–320

    Article  PubMed  Google Scholar 

  20. Gerfen CR (1993) Segregation of D1 and D2 dopamine receptor mRNA in separate populations of striatal neurons. Soc Neurosci Abstr. 19:133

    Google Scholar 

  21. Georgopoulos AP, DeLong MR, Cruther MD (1983) Relations between parameters of step tracking movements and single cell discharge in the globus pallidus and subthalamic nucleus of the behaving monkey. J Neurosci 3:1586–1598

    PubMed  Google Scholar 

  22. Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233:1416–1419

    PubMed  Google Scholar 

  23. Golani I (1992) A mobility gradient in the organization of vertebrate movement: the perception of movement through symbolic language. Behav Brain Sci 15:249–308

    Google Scholar 

  24. Goldman PS, Nauta WSH (1977) An intricately patterned prefrontcaudate projection in the rhesus monkey. J Comp Neurol 171:369–386

    Article  Google Scholar 

  25. Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254

    Article  PubMed  Google Scholar 

  26. Graybiel AM, Aosaki T, Flaherty AW, Kimura M (1994) The basal ganglia and adaptive motor control. Science 265:1826–1831

    PubMed  Google Scholar 

  27. Grossberg S (1984) Some normal and abnormal behavioral syndromes due to transmitter gating of opponent processes. Biol Psychiatry 19:1075–1117

    PubMed  Google Scholar 

  28. Guridi J, Luquin MR, Herrero MT, Obeso JA (1993) The subthalamic nucleus: a possible target for stereotaxic surgery in Parkinson's disease. Mov Disorders 8:421–429

    Article  Google Scholar 

  29. Hamada L, DeLong MR (1992) Excitotoxic acid lesions of the primate subthalamic nucleus result in reduced pallidal neuronal activity during active holding. J Neurophysiol 68:1859–1866

    PubMed  Google Scholar 

  30. Hoover JE, Strick PL (1993) Multiple output channels in the basal ganglia. Science 259:819–821

    PubMed  Google Scholar 

  31. Horak FB, Anderson ME (1984) Influence of globus pallidus on arm movements in monkeys. I. Effects of lesions. J Neurophysiol 52:290–304

    PubMed  Google Scholar 

  32. Jaeger D, Gilman S, Aldridge JW (1993) Primate basal ganglia activity in a precued reaching task: preparation for movement. Exp Brain Res 95:51–64

    Article  PubMed  Google Scholar 

  33. Jinnai K, Nambu A, Yoshida S (1989) Activity of thalamic neurons conveying the basal ganglia output to the motor cortex. In: Ito M (eds) Neural programming. Karger, Basel, pp 111–121

    Google Scholar 

  34. Kato M, Kimura M (1992) Effects of reversible blockade of basal ganglia on a voluntary arm movement. J Neurophysiol 68:1516–1534

    PubMed  Google Scholar 

  35. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic arkinson's disease. N Engl J Med 318:876–880

    PubMed  Google Scholar 

  36. Kunzle H (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia: an autoradiographie study in Macaca fascicularis. Brain Res 88:195–209

    Article  PubMed  Google Scholar 

  37. Laitinen LV, Bergenheim AT, Hariz MI (1992) Leksell's posteroventral pallidotomy in the treatment of Parkinson's disease. J Neurosurg 76:53

    PubMed  Google Scholar 

  38. Margolin DI, Wing AM (1983) Agraphia and micrographia: clinical manifestations of motor programming and performance disorders. Acta Psychol 54:263–283

    Article  Google Scholar 

  39. Marsden CD, Obeso JA (1994) The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease. Brain 117:877–897

    PubMed  Google Scholar 

  40. McLennan JE, Nakano K, Tyler HR, Schwab RS (1972) Micrographia in parkinson's disease. J Neurol Sci 15:141–152

    Article  PubMed  Google Scholar 

  41. Mink JW, Thach WT (1991a) Basal ganglia motor control. II. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters. J Neurophysiol 65:301–329

    PubMed  Google Scholar 

  42. Mink JW, Thach WT (1991b) Basal ganglia motor control. III. Pallidal ablation: normal reaction time, muscle cocontraction, and slow movement. J Neurophysiol 65:330–351

    PubMed  Google Scholar 

  43. Montgomery EB, Buchholz SR (1991) The striatum and motor cortex in motor initiation and execution. Brain Res 549:222–229

    Article  PubMed  Google Scholar 

  44. Montgomery EB, Gorman DS, Nuessen J (1991) Motor initiation versus execution in normal and Parkinson's disease subjects. Neurology 41:1469–1475

    PubMed  Google Scholar 

  45. Nambu A, Yoshida SI, Jinnai K (1990) Discharge patterns of pallidal neurons with input from various cortical areas during movement in the monkey. Brain Res 519:183–191

    Article  PubMed  Google Scholar 

  46. Neve KA, Neve RL, Fidel S, Janowsky A, Higgins GA (1991) Increased abundance of alternatively spliced forms of D2 dopamine receptor mRNA after denervation. Proc Natl Acad Sci USA 88:2802–2806

    PubMed  Google Scholar 

  47. Penney JB, Young AB (1983) Speculations on the functional anatomy of basal ganglia disorders. Annu Rev Neurosci 6:73–94

    Article  PubMed  Google Scholar 

  48. Roland PE, Larsen B, Lassen NA, Skinhoj E (1980a) Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiol 43:118–136

    PubMed  Google Scholar 

  49. Roland PE, Larsen B, Lassen NA, Skinhoj E (1980b) Different cortical areas in man in organization of voluntary movements in extrapersonal space. J Neurophysiol 43:137–150

    PubMed  Google Scholar 

  50. Schell GR, Strick PL (1984) The origin of thalamic input to the arcuate premotor and supplementary motor areas. J Neurosci 4:539–560

    PubMed  Google Scholar 

  51. Schneider JS (1987) Basal ganglia-motor influences: role of sensory gating. In: Schneider JS, Lidsky TI (eds) Basal ganglia: sensory aspects of motor functioning. Pitman, London, pp 103–121

    Google Scholar 

  52. Stelmach GE, Phillips JG (1991) Movement disorders: limb movement and the basal ganglia. Phys Ther 71:60–66

    PubMed  Google Scholar 

  53. Stelmach GE, Teasdale N, Phillips J, Worringham CJ (1989) Force production characteristics in Parkinson's disease. Exp Brain Res 76:165–172

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to José Luis Contreras-Vidal.

Additional information

On leave from Monterrey Institute of Technology, Mexico

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Contreras-Vidal, J.L., Stelmach, G.E. A neural model of basal ganglia-thalamocortical relations in normal and parkinsonian movement. Biol. Cybern. 73, 467–476 (1995). https://doi.org/10.1007/BF00201481

Download citation

Keywords

  • Basal Ganglion
  • Globus Pallidus
  • Movement Amplitude
  • Subthalamic Nucleus
  • Dopamine Depletion