Skip to main content
Log in

On the comparison of Feller and Ornstein-Uhlenbeck models for neural activity

  • Original Papers
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Diffusion processes have been extensively used to describe membrane potential behavior. In this approach the interspike interval has a theoretical counterpart in the first-passage-time of the diffusion model employed. Since the mathematical complexity of the first-passage-time problem increases with attempts to make the models more realistic it seems useful to compare the features of different models in order to highlight their relative performance. In this paper we compare the Feller and Ornstein-Uhlenbeck models under three different criteria derived from the level of information available about their parameters. We conclude that the Feller model is preferable when complete knowledge of the characterizing parameters is assumed. On the other hand, when only limited information about the parameters is available, such as the mean firing time and the histogram shape, no advantage arises from using this more complex model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aertsen A (ed) (1993) Brain theory, Elsevier, Amsterdam

    Google Scholar 

  • Buonocore A, Nobile AG, Ricciardi LM (1987) A new integral equation for the evaluation of first-passage-time probability densities. Adv Appl Prob 19:784–800

    Google Scholar 

  • Capocelli RM, Ricciardi LM (1971) Diffusion approximation and the first passage time for a model neuron. Kybernetik 8:214–223

    Article  PubMed  Google Scholar 

  • Cox DR, Miller HD (1965) The theory of stochastic processes. Chapman and Hall, London

    Google Scholar 

  • Durbin J (1971) Boundary-crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov-Smirnov test. J Appl Prob 8:431–453

    Google Scholar 

  • Feller W (1951) Diffusion processes in genetics. In: Neyman J (ed) Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley, pp 227–246

    Google Scholar 

  • Gibbons JD (1971) Nonparametric statistical inference. McGraw-Hill, New York

    Google Scholar 

  • Giorno V, Lánský P, Nobile AG, Ricciardi LM (1988) Diffusion approximation and first-passage-time problem for a model neuron. III. A birth-and-death process approach. Biol Cybern 58:387–404

    Article  PubMed  Google Scholar 

  • Giorno V, Nobile AG, Ricciardi LM, Sato S (1989) On the evaluation of first-passage-time probability densities via nonsingular integral equations. Adv Appl Prob 21:20–36

    Google Scholar 

  • Giorno V, Nobile AG, Ricciardi LM (1990) On the asymptotic behavior of first-passage-time densities for one-dimensional diffusion processes and varying boundaries. Adv Appl Prob 22:883–914

    Google Scholar 

  • Hanson FB, Tuckwell HC (1983) Diffusion approximation for neuronal activity including synaptic reversal potentials. J Theor Neurobiol 2:127–153

    Google Scholar 

  • Inoue J, Sato S, Ricciardi LM (1994) On the parameter estimation for diffusion models of single neurons' activity. Biol Cybern 73:209–221

    Article  Google Scholar 

  • Kallianpur G (1983) On the diffusion approximation to a discontinuous model for a single neuron. In: Sen PK (ed) Contributions to statistics. North-Holland, Amsterdam

    Google Scholar 

  • Kallianpur G, Wolpert RL (1987) Weak convergence of stochastic neuronal models. In: Kimura M, Kallianpur G, Hida T (eds) Stochastic methods in biology. Springer, Berlin Heidelberg New York, pp 116–145

    Google Scholar 

  • Karlin S, Taylor HM (1981) A second course in stochastic processes. Academic Press, New York

    Google Scholar 

  • Keilson J, Ross HF (1975) Passage time distributions for Gaussian Markov (Ornstein-Uhlenbeck) statistical processes. Selected Tables in Mathematical Statistics 3:233–327

    Google Scholar 

  • Lánská V, Lánsky P, Smith CA (1994) Synaptic transmission in a diffusion model for neural activity. J Theor Biol 166:393–406

    Article  PubMed  Google Scholar 

  • Lánský P (1984) On approximations of Stein's neuronal model. J Theor Biol 107:631–647

    PubMed  Google Scholar 

  • Lánský P, Lánská V (1987) Diffusion approximations of the neuronal model with synaptic reversal potentials. Biol Cybern 56:19–26

    Article  PubMed  Google Scholar 

  • Lánsky P, Lánská V (1994) First-passage-time problem for simulated stochastic diffusion processes. Comput Biol Med 24:91–101

    Article  PubMed  Google Scholar 

  • Lánský P, Musila M (1991) Variable initial depolarization in Stein's neuronal model with synaptic reversal potentials. Biol Cybern 64:285–291

    Article  PubMed  Google Scholar 

  • McKenna T, Davis J, Zornetzer SF (eds) (1992) Single neuron computation. Academic Press, Boston, Mass.

    Google Scholar 

  • Musila M, Lánský P (1994) On the interspike intervals calculated from diffusion approximations of Stein's neuronal model with reversal potential. J Theor Biol 171:225–232

    Article  PubMed  Google Scholar 

  • Nobile AG, Ricciardi LM, Sacerdote L (1985) Exponential trends of first-passage-time densities for a class of diffusion processes with steady-state distribution. J Appl Prob 22:611–618

    Google Scholar 

  • Pribram KH (eds) (1994) Origins: Brain and self organization. Erlbaum, Hillsdale, NJ

    Google Scholar 

  • Ricciardi LM (1977) Diffusion processes and related topics in biology, Springer, Berlin

    Google Scholar 

  • Ricciardi LM, Sacerdote L (1979) The Ornstein-Uhlenbeck process as a model of neuronal activity. Biol Cybern 35:1–9

    Article  PubMed  Google Scholar 

  • Ricciardi LM, Sato S (1990) Diffusion processes and first-passage-time problems. In: Ricciardi LM (ed) Lectures in applied mathematics and informatics. Manchester University Press, Manchester

    Google Scholar 

  • Ricciardi LM, Sacerdote L, Sato S (1983) Diffusion approximation and first-passage-time problem for a model neuron. II. Outline of a computation method. Math Biosci 64:29–44

    Article  Google Scholar 

  • Sacerdote L, Tomassetti F (1994) On evaluation and asymptotic approximations of first-passage-time probabilities. Preprint

  • Sato S (1978) On the moments of the firing interval of diffusion approximated neuron. Math Biosci 34:53–70

    Article  Google Scholar 

  • Schmidt RF (ed) (1984) Fundamentals of neurophysiology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Stein RB (1965) A theoretical analysis of neuronal variability. Biophys J 5:173–195

    Google Scholar 

  • Tuckwell HC (1979) Synaptic transmission in a model for stochastic neural activity. J Theor Biol 77:65–81

    Article  PubMed  Google Scholar 

  • Tuckwell HC (1988) Introduction to theoretical neurobiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Tuckwell HC, Cope DK (1980) Accuracy of neuronal interspike times calculated from a diffusion approximation. J Theor Biol 83:377–387

    Article  PubMed  Google Scholar 

  • Tuckwell HC, Richter W (1978) Neuronal interspike time distributions and the estimation of neurophysiological and neuroanatomical arameters. J Theor Biol 71:167–180

    PubMed  Google Scholar 

  • Ventriglia F (eds) (1994) Neural modeling and neural networks. Pergamon, Oxford

    Google Scholar 

  • Wilbur AJ, Rinzel J (1983) A theoretical basis for large coefficient of variation and bimodality in neuronal interspike interval distribution. J Theor Biol 105:345–368

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lánský, P., Sacerdote, L. & Tomassetti, F. On the comparison of Feller and Ornstein-Uhlenbeck models for neural activity. Biol. Cybern. 73, 457–465 (1995). https://doi.org/10.1007/BF00201480

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201480

Keywords

Navigation