Skip to main content
Log in

Methyljasmonate and α-linolenic acid are potent inducers of tendril coiling

  • Published:
Planta Aims and scope Submit manuscript

Abstract

A coiling-inducing factor was isolated from tendrils of Bryonia dioica Jacq. and identified by infrared, 1H-, 13C-nuclear magnetic resonance and mass spectrometry as α-linolenic acid. When applied to detached tendrils, exogenous α-linolenic acid, but not linoleic acid or oleic acid, induced tendril coiling. Further investigations showed that metabolites of α-linolenic acid, jasmonic acid and, even more so, methyljasmonate, are highly effective inducers of tendril coiling in B. dioica. Methyljasmonate was most active when administered by air and, in atmospheric concentrations as low as 40–80 nM, induced a full free-coiling response with kinetics similar to mechanical stimulation. Even atmospheric levels as low as 4–5 nM methyljasmonate were still found to be significantly active. Methyljasmonate could be one of the endogenous chemical signals produced in mechanically stimulated parts of a tendril and, being highly volatile, act as a diffusible gaseous mediator spreading through the intracellular spaces to trigger free coiling of tendrils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EI-MS:

electron impact-mass spectrometry

HPLC:

high-performance liquid chromatography

IAA:

indole-3-acetic acid

NMR:

nuclear magnetic resonance

TFA:

trifluoroacetic acid

References

  • Bangerth, F. (1974) Interaktionen von Auxin und Äthylen bei der thigmotropen Bewegung der Ranken von Cucumis sativus. Planta 117, 329–338

    Google Scholar 

  • English, J. Jr., Bonner, J., Haagen-Smit, A. J. (1939) The wound hormones of plants. II. The isolation of a crystalline active substance. Proc. Natl. Acad. Sci. USA 25, 323–329

    Google Scholar 

  • Farmer, E.E., Ryan, C.A. (1990) Interplant communication: Airborne methyljasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87, 7713–7716

    Google Scholar 

  • Galun, E. (1959) The cucumber tendril: a new test organ for gibberellins. Experientia 15, 184–185

    Google Scholar 

  • Gerlach, H., Künzler, P. (1978) Michael-Addition von Thiocarbonsäureestern. Anwendung bei der Synthese von (±)-Jasminketolacton. Helv. Chim. Acta 61, 2503–2509

    Google Scholar 

  • Haberlandt, G. (1924) Physiologische Pflanzenanatomie, Wilhelm Engelmann Verl., Leipzig

    Google Scholar 

  • Jaffe, M.J. (1970) Physiological studies of pea tendrils. VII. Evaluation of a technique for the asymmetrical application of ethylene. Plant Physiol. 41, 631–633

    Google Scholar 

  • Jaffe, M.J. (1975) The role of auxin in the early events of the contact coiling of tendrils. Plant Sci. Lett. 5, 217–225

    Google Scholar 

  • Jaffe, M.J., Galston, A.W. (1966) Physiological studies on pea tendrils. I. Growth and coiling following mechanical stimulation. Plant Physiol. 41, 1014–1025

    Google Scholar 

  • Jaffe, M.J., Galston, A.W. (1968a) Physiological studies on pea tendrils. V. Membrane changes and water movement associated with contact coiling. Plant Physiol. 43, 537–542

    Google Scholar 

  • Jaffe, M.J., Galston, A.W. (1968b) The physiology of tendrils. Annu. Rev. Plant Physiol. 19, 417–434

    Google Scholar 

  • Junker, S. (1976) Auxin transport in tendril segments of Passifloracaerulea. Physiol. Plant. 37, 258–262

    Google Scholar 

  • Junker, S. (1977) Thigmotropic coiling of tendrils of Passiflora quadrangularis L. is not caused by lateral redistrubution of auxin. Physiol. Plant. 41, 51–54

    Google Scholar 

  • Kates, M. (1986) Techniques of lipidology: Isolation, analysis and identification of lipids, Elsevier, Amsterdam

    Google Scholar 

  • Kelly, R.A., O'Hara, D.S., Mitch, W.E., Smith, T.W. (1986) Identification of NaK-ATPase inhibitors in human plasma as nonesterified fatty acids and lysophospholipids. J. Biol. Chem. 261, 11704–11711

    Google Scholar 

  • Knöfel, H.-D., Gross, D. (1988) Synthesis of racemic [2-14C]jasmonic acid. Z. Naturforsch. 43c, 29–31

    Google Scholar 

  • Mertens, R., Eberle, J., Arnscheidt, A., Ledebur, A., Weiler, E.W. (1985) Monoclonal antibodies to plant growth regulators. II. Indole-3-acetic acid. Planta 166, 389–393

    Google Scholar 

  • Meyer, A., Miersch, O., Büttner, C., Dathe, W., Sembdner, G. (1984) Occurrence of the plant growth regulator jasmonic acid in plants. J. Plant Growth Regul. 3, 1–8

    Google Scholar 

  • Miersch, O., Meyer, A., Vorkefeld, S., Sembdner, G. (1986) Occurrence of (+)-7-iso-jasmonic acid in Vicia faba L. and its biological activity. J. Plant Growth Regul. 5, 91–100

    Google Scholar 

  • Parthier, B. (1990) Jasmonates: hormonal regulators or stress factors in leaf senescence. J. Plant Growth Regul. 9, 57–63

    Google Scholar 

  • Quinkert, G., Adam, F., Dürner, G. (1982) Asymmetrische Synthese von Methyljasmonat. Angew. Chem. 94, 866–867

    Google Scholar 

  • Reinhold, L. (1967) Induction of coiling in tendrils by auxin and carbon dioxide. Science 158, 791–793

    Google Scholar 

  • Reinhold, L., Sachs, T., Vislovska, L. (1970) The role of auxin in thigmotropism. In: Plant growth substances, pp. 731–737, Carr, D. J., ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Saniewski, M., Nowacki, J., Czapski, J. (1987) The effect of methyljasmonate on ethylene production and ethylene-forming enzyme activity in tomatoes. J. Plant Physiol. 129, 175–180

    Google Scholar 

  • Sembdner, G., Gross, D. (1986) Plant growth substances of plant and microbial origin. In: Plant growth substances, pp. 139–147, Bopp, M., ed. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Umrath, K. (1934) Über die elektrischen Erscheinungen bei thigmischer Reizung der Ranken von Cucumis melo. Planta 23, 47–50

    Google Scholar 

  • Vick, B.A., Zimmerman, D.C. (1983) The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase. Biochem. Biophys. Res. Commun. 111, 470–477

    Google Scholar 

  • Vick, B.A., Zimmerman, D.C. (1984) Biosynthesis of jasmonic acid by several plant species. Plant Physiol. 75, 458–461

    Google Scholar 

  • Vick, B.A., Zimmerman, D.C. (1987) Pathways of fatty acid hydroperoxide metabolism in spinach leaf chloroplasts. Plant Physiol. 85, 1073–1078

    Google Scholar 

  • Weiler, E.W. (1986) Plant hormone immunoassays based on monoclonal and polyclonal antibodies. In: Immunology in plant sciences. Modern methods of plant analysis, vol. 4, pp. 1–17, Linskens, H. F., Jackson, J. F., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Zeltner, H. (1932) Über Elektronastie und andere Reizbewegungen der Ranken. Z. Bot. 25, 97–172

    Google Scholar 

  • Zimmerman, D.C., Coudron, C.A. (1979) Identification of traumatin, a wound hormone, as 12-oxo-trans-10-dodecenoic acid. Plant Physiol. 63, 536–541

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We are indebted to the Deutsche Forschungsgemeinschaft, Bonn and the Fonds der Chemischen Industrie, Frankfurt (literature provision) for their support and to Dr. C. Brückner, Halle, for jasmonic-acid determinations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falkenstein, E., Groth, B., Mithöfer, A. et al. Methyljasmonate and α-linolenic acid are potent inducers of tendril coiling. Planta 185, 316–322 (1991). https://doi.org/10.1007/BF00201050

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00201050

Key words

Navigation