The Voyager infrared spectroscopy and radiometry investigation

Abstract

The infrared investigation on Voyager uses two interferometers covering the spectral ranges 60–600 cm−1 (17–170 μm) and 1000–7000 cm−1 (1.4–10 μm), and a radiometer covering the range 8000–25 000 cm−1 (0.4–1.2 μm). Two spectral resolutions (approximately 6.5 and 2.0 cm−1) are available for each of the interferometers. In the middle of the thermal channel (far infrared interferometer) the noise level is equivalent to the signal from a target at 50 K; in the middle of the reflected sunlight channel (near infrared interferometer) the noise level is equivalent to the signal from an object of albedo 0.2 at the distance of Uranus.

For planets and satellites with substantial atmospheres, the data will be used to investigate cloud and gas composition (including isotopic ratios), haze scale height, atmospheric vertical thermal structure, local and planetary circulation and dynamics, and planetary energy balance. For satellites with tenuous atmospheres, data will be gathered on surface and atmospheric composition, surface temperature and thermal properties, local and global phase functions, and surface structure. For Saturn's rings, the composition and radial structure, particle size and thermal characteristics will be investigated. Comparative studies of the planets and their satellite systems will be carried out.

This is a preview of subscription content, log in to check access.

References

  1. Aumann, H. H. and Kieffer, H. H.: 1973, Astrophys. J. 186, 305.

    Google Scholar 

  2. Belton, M. J. S.: 1968, J. Atmos. Sci. 25, 596.

    Google Scholar 

  3. Belton, M. J. S., Hunten, D. M., and Goody, R. M.: 1968, in J. C. Brandt and M. B. McElroy (eds.), The Atmospheres of Venus and Mars, Gordon and Breach, New York, p. 69.

    Google Scholar 

  4. Birnbaum, G., and Cohen, E. R.: 1976, Bull. Amer. Astron. Soc. 8, 472.

    Google Scholar 

  5. Cameron, A. G. W.: 1973, Space Sci. Rev. 15, 121.

    Google Scholar 

  6. Conrath, B. J.: J. Atmos. Sci. 29, 1262.

  7. Conrath, B. J. and Revah, I.: 1972, in L. Colin (ed.), Mathematics of Profile Inversion, NASA TM-X 6 2150, p. 1.

  8. Fazio, G. G., Traub, W. A., and Wright, E. L.: 1976, Astrophys. J. 209, 633.

    Google Scholar 

  9. Fink, U., Dekkers, N. H., and Larsen, H. P.: 1973, Astrophys. J. 179, L155.

    Google Scholar 

  10. Fink, U., Ferraro, J. R., Larsen, H. P., Gautier, T. N., Sill, G., and Wisniewski, W.: 1977, ‘Laboratory Frost Reflection Spectra for Comparison with Solar System Objects’ (in preparation).

  11. Fink, U. and Larsen, H. P.: 1975, Icarus, 24, 411.

    Google Scholar 

  12. Fink, U., Larsen, H. P., and Gautier, T. N., III.: 1976, Icarus, 27, 439.

    Google Scholar 

  13. Gautier, D. and Grossman, K.: 1972, J. Atmos. Sci. 29, 788.

    Google Scholar 

  14. Gautier, D., Lacombe, A., and Revah, L: 1977, ‘The Thermal Structure of Jupiter from Infrared Spectral Measurements by Means of a Filtered Iterative Inversion Method’, J. Atmos. Sci. (to be published).

  15. Gautier, D. and Revah, I.: 1975, J. Atmos. Sci. 32, 881.

    Google Scholar 

  16. Gierasch, P. J.: 1973, Icarus 19, 482.

    Google Scholar 

  17. Hapke, B. W.: 1963, J. Geophys. Res. 68, 4571.

    Google Scholar 

  18. Horai, K-I. and Fujii, N.: 1972, Moon 4, 447.

    Google Scholar 

  19. Hunt, G. R. and Salisbury, J. W.: 1970, Mod. Geol. 1, 283.

    Google Scholar 

  20. Hunt, G. R., Salisbury, J. W., and Lenhoff, C. J.: 1973, Mod. Geol. 4, 85.

    Google Scholar 

  21. Ingersoll, A. P.: 1976, Icarus 29, 245.

    Google Scholar 

  22. Ingersoll, A. P. and Cuzzi, J. N.: 1969, J. Atmos. Sci. 26, 981.

    Google Scholar 

  23. Jones, W. P., Watkins, J. R., and Calvert, T. A.: 1975, Moon 13, 475.

    Google Scholar 

  24. Kliore, A. J., Fjeldbo, G., Seidel, B. L., Sweetnam, D. N., Sesplaukis, T. T., and Woiceshyn, P. M.: 1975, Icarus 24, 407.

    Google Scholar 

  25. Kliore, A. J., Woiceshyn, P. M., and Hubbard, W. B.: 1976, Geophys. Res. Letters 3, 113.

    Google Scholar 

  26. Larson, H. P., Treffers, R. R., and Fink, U.: 1977, Astrophys. J. 211, 972.

    Google Scholar 

  27. Leovy, C. B. and Pollack, J. B.: 1973, Icarus 19, 195.

    Google Scholar 

  28. Lewis, J. S.: 1971, Icarus 15, 174.

    Google Scholar 

  29. Linsky, J. L.: 1969, Astrophys. J. 156, 989.

    Google Scholar 

  30. Lowman, P. D., Jr.: 1976, J. Geology 84, 1.

    Google Scholar 

  31. McClatchey, R. A., Benedict, W. S., Clough, S. A., Burch, D. E., Calfee, R. F., Fox, K., Rothman, L. S., and Garing, J. S.: 1973, ‘AFCRL Atmospheric Absorption Line Parameters Compilation’, AFCRL-TR-73–0096, Air Force Cambridge Research Laboratory, Bedford, Mass.

    Google Scholar 

  32. Morrison, D. and Cruikshank, D. P.: 1973, Icarus 18, 224.

    Google Scholar 

  33. Orton, G. S.: 1975a, Icarus 26, 125.

    Google Scholar 

  34. Orton, G. S.: 1975b, Icarus 26, 142.

    Google Scholar 

  35. Pang, K. and Hord, C. W.: 1971, Icarus 15, 443.

    Google Scholar 

  36. Ridgway, S. T., Larson, H. P., and Fink, U.: 1976, in T. Gehreis (ed.), Jupiter, Univ. of Arizona Press, Tucson, p. 384.

    Google Scholar 

  37. Samuelson, R. E. Hanel, R. A., Herath, L. W., Kunde, V. G., and Maguire, W. C.: 1975, Icarus 25, 49.

    Google Scholar 

  38. Taylor, F. W.: 1973, J. Atmos. Sci. 30, 677.

    Google Scholar 

  39. Trafton, L. M.: 1966, Astrophys. J. 146, 558.

    Google Scholar 

  40. Trafton, L. M.: 1967, Astrophys. J. 147, 765.

    Google Scholar 

  41. Veverka, J. and Wasserman, L.: 1972, Icarus 16, 281.

    Google Scholar 

  42. Wallace, L. and Smith, G. R.: 1976, Astrophys. J. 203, 760.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Additional information

Paris Observatory.

Cornell University.

Jet Propulsion Laboratory.

University of Maryland.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hanel, R., Conrath, B., Gautier, D. et al. The Voyager infrared spectroscopy and radiometry investigation. Space Sci Rev 21, 129–157 (1977). https://doi.org/10.1007/BF00200848

Download citation

Keywords

  • Noise Level
  • Spectral Resolution
  • Phase Function
  • Satellite System
  • Thermal Structure