Skip to main content
Log in

19F NMR relaxation studies on 5-fluorotryptophan- and tetradeutero-5-fluorotryptophan-labeled E. coli glucose/galactose receptor

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

19F NMR relaxation studies have been carried out on a fluorotryptophan-labeled E. coli periplasmic glucose/galactose receptor (GGR). The protein was derived from E. coli grown on a medium containing a 50:50 mixture of 5-fluorotryptophan and [2,4,6,7-2H4]-5-fluorotryptophan. As a result of the large λ-isotope shift, the two labels give rise to separate resonances, allowing relaxation contributions of the substituted indole protons to be selectively monitored. Spin-lattice relaxation rates were determined at field strengths of 11.75 T and 8.5 T, and the results were analyzed using a model-free formalism. In order to evaluate the contributions of chemical shift anisotropy to the observed relaxation parameters, solid-state NMR studies were performed on [2,4,6,7-2H4]-5-fluorotryptophan. Analysis of the observed 19F powder pattern lineshape resulted in anisotropy and asymmetry parameters of Δσ=−93.5 ppm and π=0.24. Theoretical analyses of the relaxation parameters are consistent with internal motion of the fluorotryptophan residues characterized by order parameters S2 of ∼1, and by correlation times for internal motion ∼10-11 s. Simultaneous least squares fitting of the spin-lattice relaxation and line-width data with τi set at 10 ps yielded a molecular correlation time of 20 ns for the glucose-complexed GGR, and a mean order parameter S2=0.89 for fluorotryptophan residues 183, 127, 133, and 195. By contrast, the calculated order parameter for FTrp284, located on the surface of the protein, was 0.77. Significant differences among the spin-lattice relaxation rates of the five fluorotryptophan residues of glucose-complexed GGR were also observed, with the order of relaxation rates given by: R sup183inf1F >R sup127inf1F ∼R sup133inf1F ∼R sup195inf1F >R sup284inf1F . Although such differences may reflect motional variations among these residues, the effects are largely predicted by differences in the distribution of nearby hydrogen nuclei, derived from crystal structure data. In the absence of glucose, spin-lattice relaxation rates for fluorotryptophan residues 183, 127, 133, and 195 were found to decrease by a mean of 13%, while the value for residue 284 exhibits an increase of similar magnitude relative to the liganded molecule. These changes are interpreted in terms of a slower overall correlation time for molecular motion, as well as a change in the internal mobility of FTrp284, located in the hinge region of the receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FTrp:

D,L-5-fluorotryptophan

GGR:

glucose/galactose receptor protein

R1F :

spin-lattice relaxation rate of fluorine

R1F(H):

spinlattice relaxation rate of the fluorine nuclei in normal (nondeuterated) fluorotryptophan residues

R1F(D):

spin-lattice relaxation rate of the fluorine in [2,4,6,7-2H4]-5-fluorotryptophan

References

  • Ando, M.E., Gerig, J.T. and Luk, K.F.S. (1986) Biochemistry, 25, 4772–4778.

    Google Scholar 

  • Browne, D.T. and Otvos, J.D. (1976) Biochem. Biophys. Res. Commun., 68, 907–913.

    Google Scholar 

  • Cheng, J.-W., Lepre, C.A. and Moore, J.M. (1994) Biochemistry, 33, 4093–4100.

    Google Scholar 

  • Epstein, D.M., Benkovic, S.J. and Wright, P.E. (1995) Biochemistry, 34, 11037–11048.

    Google Scholar 

  • Gerig, J.T. (1980) J. Am. Chem. Soc., 102, 7308–7312.

    Google Scholar 

  • Gerig, J.T., Klinkenborg, J.C. and Nieman, R.A. (1983) Biochemistry, 22, 2076–2087.

    Google Scholar 

  • Gerig, J.T. (1994) Prog. NMR Spectrosc., 26, 293–370.

    Google Scholar 

  • Griffiths, D.V., Feeney, J., Roberts, G.C.K. and Burgen, A.S.V. (1976) Biochim. Biophys. Acta, 446, 479–485.

    Google Scholar 

  • Halstead, T.K., Speiss, H.W. and Haeberlen, U. (1976) Mol. Phys., 31, 1569–1583.

    Google Scholar 

  • Harbison, G.S. (1993) J. Am. Chem. Soc., 115, 3026–3027.

    Google Scholar 

  • Hinds, M.G., King, R.W. and Feeney, J. (1992) Biochem. J., 287, 627–632.

    Google Scholar 

  • Hiyama, Y., Silverton, J.V., Torchia, D.A., Gerig, J.T. and Hammond, S.J. (1986) J. Am. Chem. Soc., 108, 2715–2723.

    Google Scholar 

  • Ho, C., Pratt, E.A. and Rule, G.S. (1989) Biochim. Biophys. Acta, 988, 173–184.

    Google Scholar 

  • Hoeltzli, S. and Frieden, C. (1994) Biochemistry, 33, 5502–5509.

    Google Scholar 

  • Hull, W.E. and Sykes, B.D. (1974) Biochemistry, 13, 3431–3437.

    Google Scholar 

  • Hull, W.E. and Sykes, B.D. (1975a) J. Chem. Phys., 63, 867–880.

    Google Scholar 

  • Hull, W.E. and Sykes, B.D. (1975b) J. Mol. Biol., 98, 121–153.

    Google Scholar 

  • Ishima, R., Shibata, S. and Akasaka, K. (1991) J. Magn. Reson., 91, 455–465.

    Google Scholar 

  • Jarema, M.A., Lu, P. and Miller, J.H. (1981) Proc. Natl. Acad. Sci. USA, 78, 2707–2711.

    Google Scholar 

  • Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.

    Google Scholar 

  • Keepers, J.W. and James, T.L. (1984) J. Magn. Reson., 57, 404–426.

    Google Scholar 

  • Li, E., Qian, S., Nader, L., Yang, N.C., d'Avignon, A., Sacchettini, J.C. and Gordon, J.I. (1989) J. Biol. Chem., 264, 17041–17048.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4559.

    Google Scholar 

  • London, R.E. (1990) J. Magn. Reson., 86, 410–415.

    Google Scholar 

  • Luck, L.A. and Falke, J.J. (1991a) Biochemistry, 30, 4248–4256.

    Google Scholar 

  • Luck, L.A. and Falke, J.J. (1991b) Biochemistry, 30, 4257–4261.

    Google Scholar 

  • Luck, L.A. and Falke, J.J. (1991c) Biochemistry, 30, 6484–6490.

    Google Scholar 

  • Marshall, A.G., Schmidt, P.G. and Sykes, B.D. (1972) Biochemistry, 11, 3875–3879.

    Google Scholar 

  • MassefskiJr., W. and Bolton, P.H. (1985) J. Magn. Reson., 65, 526–530.

    Google Scholar 

  • Matthews, H.R., Matthews, K.S. and Opella, S.J. (1977) Biochim. Biophys. Acta, 497, 1–13.

    Google Scholar 

  • Mehring, M. (1976) In NMR: Basic Principles and Progress, Vol. 11 (Eds, Diehl, P., Fluck, E. and Kosfeld, R.), Springer, Berlin, pp. 174–183.

    Google Scholar 

  • Mispelter, J., Lefevre, C., Adjadj, E., Quiniou, E. and Favaudon, V. (1995) J. Biomol. NMR, 5, 233–244.

    Google Scholar 

  • Moreland, C.G. and Carroll, F.I. (1974) J. Magn. Reson., 15, 596–599.

    Google Scholar 

  • Morris, G.A. and Freeman, R. (1978) J. Magn. Reson., 29, 433–462.

    Google Scholar 

  • Osten, H.J., Jameson, C.J. and Craig, N.C. (1985) J. Chem. Phys., 83, 5434–5441.

    Google Scholar 

  • Peersen, O.B., Pratt, E.A., Truong, H.-T.N., Ho, C. and Rule, G.S. (1990) Biochemistry, 29, 3256–3262.

    Google Scholar 

  • Post, J.F.M., Cottam, P.F., Simplaceanu, V. and Ho, C. (1984) J. Mol. Biol., 179, 729–743.

    Google Scholar 

  • Rance, M. and Byrd, R.A. (1983) J. Magn. Reson., 52, 221–240.

    Google Scholar 

  • Stone, M.J., Chandrasekhar, K., Holmgren, A., Wright, P.E. and Dyson, H.J. (1993) Biochemistry, 32, 426–435.

    Google Scholar 

  • Vyas, N.K., Vyas, M.N. and Quiocho, F.A. (1988) Science 242, 1290–1295.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luck, L.A., Vance, J.E., O'Connell, T.M. et al. 19F NMR relaxation studies on 5-fluorotryptophan- and tetradeutero-5-fluorotryptophan-labeled E. coli glucose/galactose receptor. J Biomol NMR 7, 261–272 (1996). https://doi.org/10.1007/BF00200428

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00200428

Keywords

Navigation