Skip to main content
Log in

Specific proteins in the sieve-tube exudate of Ricinus commuais L. seedlings: separation, characterization and in-vivo labelling

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Ricinus communis L. seedlings exuded pure phloem sap from the cut hypocotyl for several hours. Throughout the entire exudation period proteins were present in the phloem exudate at a constant concentration ranging from 0.11 to 0.41 mg·ml−1 depending on the culture conditions and the age of the seedlings. Manipulation of the nutrient supply at the cotyledons after removal of the endosperm did not change the protein concentration in the exudate. Comparison of sieve-tube exudate proteins (STEPs) with soluble proteins extracted from the hypocotyl and the cotyledons showed a unique abundance of small proteins in the exudate, with molecular weights ranging from 10 to 25 kDa. Bands at 18, 19 and 20 kDa were especially dominant. The proteins found transiently in the xylem exudate, which might represent proteins secreted at the wound surface, were different in pattern. Two-dimensional separation of STEPs revealed that more than 100 distinct polypeptides occurred in the sieve-tube exudate, most of them slightly acidic with isoelectric points ranging from 4 to 6 and a few basic ones around 8. [35S]Methionine fed to the cotyledons led to labelling of STEPs, demonstrating their rapid synthesis. It is concluded that there is a continuous synthesis and translocation of specific sieve-tube proteins, whose function is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

IEF:

isoelectric focussing

pI:

isoelectric point

STEP:

sieve-tube exudate protein

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

TCA:

trichloroacetic acid

References

  • Bostwick, D.E., Dannenhoffer, J.M., Skaggs, M.I., Lister, R.M., Larkins, B.A., Thompson, G.A. (1992) Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell 4, 1539–1548

    Google Scholar 

  • Aloni, R., Raviv, A., Peterson, C. (1991) The role of auxin in the removal of dormancy callose and resumption of phloem activity in Vitis vinifera. Can. J. Bot. 69, 1825–1832

    Google Scholar 

  • Cronshaw, J. (1975) P-proteins. In: Phloem transport, pp. 79–115, Aronoff, S., Dainty, J., Gorham, P.R., Swanson, C.A., eds. Plenum, New York London

    Google Scholar 

  • Cronshaw, J., Sabnis, D.D. (1990) Phloem proteins. In: Sieve elements, pp. 257–284, Behnke, H.-D., Sjolund, R.D., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Eschrich, W., Heyser, W. (1975) Biochemistry of phloem constituents. In: Encyclopedia of plant physiology, N.S., vol. 1: Transport in plants I. Phloem transport, pp. 101–136, Zimmermann, M.H., Milburn, J.D., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fisher, D.B., Wu, Y., Ku, M.S.B. (1992) Turnover of soluble proteins in the wheat sieve tube. Plant Physiol. 100, 1433–1441

    Google Scholar 

  • Geigenberger, P., Langenberger, S., Wilke, J., Heineke, D., Heldt, H.W., Stitt, M. (1993) Sucrose is metabolized by sucrose synthase and glycolysis within the phloem complex of Ricinus communis L. seedlings. Planta 190, 446–453

    Google Scholar 

  • Geiger, D.R. (1975) Phloem loading. In: Encyclopedia of plant physiology, N.S., vol. 1: Transport in plants I. Phloem transport, pp. 395–431, Zimmermann, M.H., Milburn, J.D., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gietl, C., Ziegler, H. (1979) mRNA in phloem exudates? Naturwissenschaften 66, 523–524

    Google Scholar 

  • Hall, S.M., Baker, D.A. (1972) The chemical composition of Ricinus phloem exudate. Planta 106, 131–140

    Google Scholar 

  • Kallarackal, J., Orlich, G., Schobert, C., Komor, E. (1989) Sucrose transport into the phloem of Ricinus seedlings as measured by sieve-tube sap analysis. Planta 177, 327–335

    Google Scholar 

  • Kallarackal, J., Komor, E. (1989) The transport of hexoses by the phloem of Ricinus seedlings. Planta 177, 336–341

    Google Scholar 

  • Kauss, H., Ziegler, H. (1974) Carbohydrate-binding proteins from the sieve tube sap of Robinia pseudoacacia. Planta 121, 197–200

    Google Scholar 

  • Kennecke, M., Ziegler, H., De Fekete, M.A.R. (1971) Enzymaktivitäten im Siebröhrensaft von Robinia pseudoacacia L. und anderer Baumarten. Planta 98, 330–356

    Google Scholar 

  • Kleinig, H., Thönes, J., Dörr, I. Kollmann, R. (1975) Filament formation in vitro of a sieve tube protein from Cucurbita maxima and Cucurbita pepo. Planta 127, 163–170

    Google Scholar 

  • Köhler, J., Fritz, E., Orlich, G., Komor, E. (1991) Microautoradiographic studies of the role of mesophyll and bundle tissues of the Ricinus cotyledon in sucrose uptake. Planta 183, 251–257

    Google Scholar 

  • Kollmann, R., Dörr, I., Kleinig, H. (1970) Protein filaments — structural components of the phloem exudate. I. Observations with Cucurbita and Nicotiana. Planta 95, 86–94

    Google Scholar 

  • Komor, E., Kallarackal, J., Schobert, C., Orlich, G. (1989) Comparison of solute transport in the phloem of the Ricinus communis seedling and the adult plant. Plant Physiol. Biochem. 27, 545–550

    Google Scholar 

  • Mans, R.J., Novelli, G.D. (1961) Measurement of the incorporation of radioactive amino acids into protein by a filter-paper disk method. Arch. Biochem. Biophys. 94, 48–53

    Google Scholar 

  • Neumann, S., Wollgiehn, R. (1964) Über die Beziehungen der RNS-und Proteinsynthese zum Zellkern in Siebzellen von Vicia faba. Z. Naturforsch. 19b, 1066–1071

    Google Scholar 

  • Nuske, J., Eschrich, W. (1976) Synthesis of P-protein in mature phloem of Cucurbita maxima. Planta 132, 109–118

    Google Scholar 

  • Orlich, G., Komor, E. (1992) Phloem loading in Ricinus cotyledons: sucrose pathways via the mesophyll and the apoplasm. Planta 187, 460–474

    Google Scholar 

  • Parthasarathy, M.V. (1975) Sieve element structure. In: Encyclopedia of plant physiology, N.S., vol. 1: Transport in plants I. Phloem transport, pp. 3–56, Zimmermann, M.H., Milburn, J.D., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Raven, J.A. (1991) Long-term functioning of enucleate sieve elements: possible mechanisms of damage avoidance and damage repair. Plant Cell Environ. 14, 139–146

    Google Scholar 

  • Read, S.M., Northcote, D.H. (1983) Chemical and immunological similarities between the phloem proteins of three genera of the Cucurbitaceae. Planta 158, 119–127

    Google Scholar 

  • Robertson, E.F., Dannelly, H.K., Malloy, P.J., Reeves, H.C. (1987) Rapid isoelectric focussing in a vertical polyacrylamide minigel system. Anal. Biochem. 167, 290–294

    Google Scholar 

  • Sabnis, D.D., Hart, J.W. (1978) The isolation and some properties of a lectin (haemagglutinin) from Cucurbita phloem exudate. Planta 142, 97–101

    Google Scholar 

  • Schägger, H., v. Jagow, G. (1987) Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–377

    Google Scholar 

  • Schobert, C., Komor, E. (1989) The differential transport of amino acids into the phloem of Ricinus seedlings as revealed by sievetube sap analysis. Planta 177, 342–349

    Google Scholar 

  • Schobert, C., Komor, E. (1990) Transfer of amino acids and nitrate from the roots into the xylem of Ricinus communis seedlings. Planta 181, 85–90

    Google Scholar 

  • Sham, M.H., Northcote, D.H. (1987) Transcription and translation of phloem protein (PP2) during phloem differentiation in Cucurbita maxima. Planta 170, 392–399

    Google Scholar 

  • Sloan, R.T., Sabnis, D.D., Hart, J.W. (1976) The heterogeneity of phloem exudate proteins from different plants: A comparative survey of ten plants using polyacrylamide gel electrophoresis. Planta 132, 97–102

    Google Scholar 

  • Smith, J.A.C., Milburn, J.A. (1980) Osmoregulation and the control of phloem sap composition in Ricinus communis L. Planta 148, 28–34

    Google Scholar 

  • Smith, L.M., Sabnis, D.D., Johnson, R.P.C. (1987) Immunocytochemical localisation of phloem lectin from Cucurbita maxima using peroxidase and colloidal gold labels. Planta 170, 461–470

    Google Scholar 

  • Walker, T.S., Thaine, R. (1971) Proteins and fine structural components in exudate from sieve tubes in Cucurbita pepo stems. Ann. Bot. 35, 773–790

    Google Scholar 

  • Weber, C., Franke, W.W., Kartenbeck, J. (1974) Structure and biochemistry of phloem-proteins isolated from Cucurbita maxima. Exp. Cell Res. 87, 79–106

    Google Scholar 

  • Wolf, S., Deom, C.M., Beachy, R., Lucas, W.J. (1989) Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246, 377–379

    Google Scholar 

  • Ziegler, H. (1975) Nature of transported substances. In: Encyclopedia of plant physiology, N.S., vol. 1: Transport in plants I. Phloem transport, pp. 59–100, Zimmermann, M.H., Milburn, J.D., eds. Springer, Berlin Heidelberg New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We wish to thank Pia Großmann and Libuse Badewitz for technical help.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakuth, T., Schobert, C., Pecsvaradi, A. et al. Specific proteins in the sieve-tube exudate of Ricinus commuais L. seedlings: separation, characterization and in-vivo labelling. Planta 191, 207–213 (1993). https://doi.org/10.1007/BF00199751

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00199751

Key words

Navigation