Skip to main content
Log in

Visual control of wing beat frequency in Drosophila

  • Original Papers
  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Abstract

The present study shows that the wing beat frequency of Drosophila is visually controlled and modulated in response to different optomotor stimuli.

Whereas rotational large field stimuli do not appear to modulate wing beat frequency, single rotating vertical stripes increase or decrease wing beat frequency when moving back-to-front or front-to-back, respectively. Maximal modulations occur at lateral stripe positions.

Expansion stimuli eliciting the landing response cause a marked increase in wing beat frequency. Parameters of this frequency response depend in a graded fashion on certain stimulus properties, and the frequency response co-habituates with the landing response. Several results indicate that the frequency response is an integral component of the landing response, although it can also occur when the characteristic front leg extension is not observed. The complex spatial input integration underlying the frequency response and other motor components of the landing response cannot easily be explained by a system of large field integration units, but might indicate the existence of local expansion detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baader A, Schäfer M, Rowell CHF (1992) The perception of the visual flow field by flying locusts: a behavioural and neuronal analysis. J Exp Biol 165:137–160

    Google Scholar 

  • Bausenwein B, Wolf R, Heisenberg M (1986) Genetic dissection of optomotor behavior in Drosophila melanogaster. Studies in wild-type and the mutant optomotor-blind H31. J Neurogenetics 3:87–109

    Google Scholar 

  • Bausenwein B, Friedrich RW, Waldvogel FM, Spatz HC (1993) Visual control of wing-beat frequency in Drosophila. In: Elsner N, Heisenberg M (eds) Gene-brain-behavior. Thieme, Stuttgart New York, p 170

    Google Scholar 

  • Belton P (1986) Sounds of insect flight. In: Danthanarayana W (ed) Insect flight. Springer, Berlin Heidelberg New York, pp 60–70

    Google Scholar 

  • Blondeau J, Heisenberg M (1982) The 3-dimensional optomotor torque system of Drosophila melanogaster. Studies on wild-type and the mutant optomotor-blind H31. J Comp Physiol 145:321–329

    Google Scholar 

  • Boettiger EG (1957) The machinery of insect flight. In: Scheer BT (ed) Recent advances in invertebrate physiology. Univ Oregon Publ, Eugene, pp 117–142

    Google Scholar 

  • Borst A (1989) Temporal processing of excitatory and inhibitory motion stimuli in the fly's landing system. Naturwissenschaften 76:531–534

    Google Scholar 

  • Borst A, Bahde S (1988) Spatio-temporal integration of motion. Naturwissenschaften 75:265–267

    Google Scholar 

  • David CT (1978) The relationship between body angle and flight speed in free-flying Drosophila. Physiol Entomol 3:191–195

    Google Scholar 

  • David CT (1985) Visual control of the partition of flight force between lift and thrust in free-flying Drosophila. Nature 313:48–50

    Google Scholar 

  • Egelhaaf M (1985a) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed on the neuronal network and the role of the optomotor system. Biol Cybern 52:123–140

    Google Scholar 

  • Egelhaaf M (1985b) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-detection cells, a new class of visual interneurones. Biol Cybern 52:195–209

    Google Scholar 

  • Egelhaaf M (1989) Visual afferences to flight steering muscles controlling optomotor responses of the fly. J Comp Physiol A 165:719–730

    Google Scholar 

  • Egelhaaf M, Hausen K, Reichardt W, Wehrhahn C (1988) Visual course control in flies relies on neuronal computation of object and background motion. Trends Neurosci 11:351–358

    Google Scholar 

  • Fischbach KF (1981) Habituation and sensitization of the landing response of Drosophila melanogaster. Naturwissenschaften 68:332

    Google Scholar 

  • Fischbach KF, Bausenwein B (1988) Habituation and sensitization of the landing response of Drosophila melanogaster. II: Receptive field size of habituating units. In: Hertting G, Spatz HC (eds) Modulation of synaptic transmission and plasticity in nervous systems. Springer, Berlin Heidelberg New York, pp 369–389

    Google Scholar 

  • Goodman J (1960) The landing responses of insects. The landing response of the fly Lucilia sericata and other Calliphorinae. J Exp Biol 37:854–878

    Google Scholar 

  • Götz KG (1964) Optomotorische Untersuchungen des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2:77–92

    Google Scholar 

  • Götz KG (1968) Flight control in Drosophila by visual perception of motion. Kybernetik 4:199–208

    Google Scholar 

  • Götz KG (1983) Bewegungssehen und Flugsteuerung bei der Fliege Drosophila. In: Nachtigall W (ed) Biona-report 2. Akademie der Wissenschaften und der Literatur Mainz. G. Fischer, Stuttgart New York, pp 21–34

    Google Scholar 

  • Götz KG (1987) Course-control, metabolism and wing interference during ultralong tethered flight in Drosophila melanogaster. J Exp Biol 128:35–46

    Google Scholar 

  • Götz KG, Wandel U (1984) Optomotor control of the force of flight in Drosophila and Musca. II. Covariance of lift and thrust in still air. Biol Cybern 51:135–139

    Google Scholar 

  • Götz KG, Hengstenberg B, Biesinger R (1979) Optomotor control of wing beat and body posture. Biol Cybern 35:101–112

    Google Scholar 

  • Heide G (1971a) Die Funktion der nicht-fibrillären Flugmuskeln von Calliphora. I. Lage, Insertionsstellen und Innervierungsmuster der Muskeln. Zool Jahrb Physiol 76:87–98

    Google Scholar 

  • Heide G (1971b) Die Funktion der nicht-fibrillären Flugmuskeln von Calliphora. II. Muskuläre Mechanismen der Flugsteuerung und ihre nervöse Kontrolle. Zool Jahrb Physiol 76:99–137

    Google Scholar 

  • Heide G (1983) Neural mechanisms of flight control in Diptera. In: Nachtigall W (ed) Biona-report 2. Akademie der Wissenschaften und der Literatur Mainz. G. Fischer, Stuttgart New York, pp 21–34

    Google Scholar 

  • Heide G, Spüler M, Götz KG, Kamper K (1985) Neural control of asynchronous flight muscles in flies during induced flight manoeuvres. In: Gewecke M, Wendler G (eds) Insect locomotion. Parey, Hamburg, pp 215–222

    Google Scholar 

  • Heisenberg M, Wolf R (1979) On the fine structure of yaw torque in visual flight orientation of Drosophila melanogaster. J Comp Physiol 130:113–130

    Google Scholar 

  • Heisenberg M, Wolf R (1984) Vision in Drosophila. Genetics of Microbehavior. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nachtigall W (1966) Die Kinematik der Schlagflügelbewegungen von Dipteren. Methodische und analytische Grundlagen zur Biophysik des Insektenflugs. Z Vergl Physiol 52:155–211

    Google Scholar 

  • Nachtigall W (1968) Gläserne Schwingen. Aus einer Werkstatt biophysikalischer Forschung. Moos, München

    Google Scholar 

  • Nachtigall W, Roth W (1983) Correlations between stationary measurable parameters of wing movement and aerodynamic force production in the blowfly (Calliphora vicina R.-D.). J Comp Physiol 150:251–260

    Google Scholar 

  • Pringle JWS (1949) The excitation and contraction of flight muscles of insects. J Physiol (Lond) 108:226–232

    Google Scholar 

  • Pringle JWS (1978) Stretch activation of muscle: function and mechanism. Proc R Soc Lond B 201:107–130

    Google Scholar 

  • Reichardt W, Poggio T (1976) Visual control of orientation behaviour in the fly. Part I. A quantitative analysis. Quart Rev Biophys 9:311–375

    Google Scholar 

  • Reichert H, Rowell CHF, Griss C (1985) Course correction circuitry translates feature detection into behavioural action in locusts. Nature 315:142–144

    Google Scholar 

  • Robertson RM, Pearson KG (1985) Neural networks controlling locomotion in locusts. In: Selverston AI (ed) Model neural networks and behaviour. Plenum Press, New York, pp 21–35

    Google Scholar 

  • Robertson RM, Reye DN (1992) Wing movements associated with collision avoidance manouvres during flight in the locust Locusta migratoria. J Exp Biol 163:231–258

    Google Scholar 

  • Smyth T, Yurkiewicz WJ (1966) Visual reflex control of indirect flight muscles in the sheep blowfly. Comp Biochem Physiol 17:1175–1180

    Google Scholar 

  • Wagner H (1982) Flow-field variables trigger landing in flies. Nature 297:147–148

    Google Scholar 

  • Waldvogel FM (1992) Flugsteuerung bei der Fliege Drosophila melanogaster: Anatomie, Muskulatur und Physiologie des Flugapparates. Dissertation, University of Freiburg, Germany

    Google Scholar 

  • Waldvogel FM, Fischbach KF (1991) Plasticity of the landing response of Drosophila melanogaster. J Comp Physiol A 169:323–330

    Google Scholar 

  • Warnke R, Spatz HCh (1977) Der Flügelschlag einer Fliege. Biologie in unserer Zeit 6:188–190

    Google Scholar 

  • Wendler G (1974) The influence of proprioreceptive feedback on locust flight co-ordination. J Comp Physiol 88:173–200

    Google Scholar 

  • Wittekind WC, Spatz HCh (1988) Habituation of the landing response of Drosophila. In: Hertting G, Spatz HC (eds) Modulation of synaptic transmission and plasticity. Springer, Berlin Heidelberg New York, pp 351–368

    Google Scholar 

  • Zalokar M (1947) Anatomie du thorax de Drosophila melanogaster. Rev Suisse Zool 54:17–53

    Google Scholar 

  • Zanker JM (1988) How does lateral abdomen deflection contribute to flight control of Drosophila melanogaster? J Comp Physiol A 162:581–588

    Google Scholar 

  • Zanker JM (1990) The wing beat of Drosophila melanogaster I. Kinematics. Phil Trans R Soc Lond 327:1–18

    Google Scholar 

  • Zanker JM, Götz KG (1990) The wing beat of Drosophila melanogaster II. Dynamics. Phil Trans R Soc Lond 327:45–64

    Google Scholar 

  • Zanker JM, Egelhaaf M, Warzecha AK (1991) On the coordination of motor output during visual flight control of flies. J Comp Physiol A 169:127–134

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, R.W., Spatz, H.C. & Bausenwein, B. Visual control of wing beat frequency in Drosophila . J Comp Physiol A 175, 587–596 (1994). https://doi.org/10.1007/BF00199480

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00199480

Key words

Navigation