Skip to main content
Log in

Dielectric constants of tephroite, fayalite and olivine and the oxide additivity rule

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

The dielectric constants and dissipation factors of synthetic tephroite (Mn2SiO4), fayalite (Fe3SiO4) and a forsteritic olivine (Mg1.80Fe0.22SiO4) were measured at 1 MHz using a two-terminal method and empirically determined edge corrections. The results are: tephroite, κ′a= 8.79 tan δa = 0.0006 κ′b = 10.20 tan δb = 0.0006 κ′c= 8.94 tan δc= 0.0008 fayalite, gk′a = 8.80 tan δa = 0.0004 gk′b= 8.92 tan δb = 0.0018 gk′c = 8.58 tan δc = 0.0010 olivine, gk′a = 7.16 tan δa = 0.0006 gk′b = 7.61 tan δb = 0.0008 gk′c = 7.03 tan δc = 0.0006 The low dielectric constant and loss of the fayalite indicate an exceptionally low Fe3+ content. An FeO polarizability of 4.18 Å3, determined from αD(FeO) = [αD (Fe2SiO4)-αD(SiO2)]/2, is probably a more reliable value for stoichiometric FeO than could be obtained from FexO where x = 0.90–0.95. The agreement between measured dielectric polarizabilities as determined from the Clausius-Mosotti equation and those calculated from the sum of oxide polarizabilities according to αD(M2M′X2) = 2αD(MX) + αD(M′X2) is ∼+2.8% for tephroite and +0.2% for olivine. The deviation from additivity in tephroite is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson OL (1974) Optical properties of rock-forming minerals derived from atomic properties. Fortschr Mineral 52:611–629

    Google Scholar 

  • Armstrong JT (1988) Qantitative analysis of silicate and oxide materials: comparison of Monte Carlo, ZAF and φ (ρ z) procedures. Microbeam Analysis 1988, pp 239–246

    Google Scholar 

  • Arndt J, Hummel W (1988) The general refractivity formula applied to densified silicate glasses. Phys Chem Minerals 15:363–369

    Google Scholar 

  • Bosman AJ, Havinga EE (1963) Temperature dependence of dielectric constants of cubic ionic compounds. Phys Rev 129:1593–1600

    Google Scholar 

  • Castner TG (1980) The dielectric anomaly as the insulator-metal transition is approached from the insulating side. Phil Mag 42B:873–893

    Google Scholar 

  • Chaudhury AK, Rao KV (1969) Dielectric properties of single crystals of MnO and of mixed crystals MnO/CoO and MnO/NiO. Phys Status Solidi 32:731–739

    Google Scholar 

  • Chen CY, Birgenau RJ, Gabbe DR, Jenssen HP, Kastner MA, Picone PJ, Preyer NW, Thio T (1989) Frequency dependence of the conductivity and dielectric constant of La2CuO4+y near the insulator-metal transition. Physica C162:1031–1032

    Google Scholar 

  • Davis A, Leigh CRA, Hampton RN, Saunders GA, Parker SC (1988) Temperature dependence of the static dielectric constant of naturally-occurring monocrystalline forsterite. J Mater Sci Lett 7:414–416

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1962) Rock forming minerals, vol. 1. Ortho- and ring silicates. Longman, London, pp 1–33

    Google Scholar 

  • Duffin WJ (1980) Electricity and magnetism. 3rd Ed. McGraw-Hill, London, pp 307–329

    Google Scholar 

  • Dunmur DA (1972) The local electric field in anisotropic molecular crystals. Molec Phys 23:109–115

    Google Scholar 

  • Finch CB, Clark GW, Kopp OC (1980) Czochralski growth of single-crystal fayalite under controlled oxygen fugacity conditions. Am Mineral 65:381–389

    Google Scholar 

  • Fontanella J, Andeen C, Schuele D (1974) Low frequency dielectric constants of α-quartz, sapphire, MgF2 and MgO. J Appl Phys 45:2852–2854

    Google Scholar 

  • Gartstein E, Cohen JB, Mason TB (1986) Defect agglomeration in wustite at high temperatures — II. J Phys Chem Solids 47:775–781

    Google Scholar 

  • Graham EK, Schwab JA, Sopkin SM, Takei H (1988) The pressure and temperature dependence of the elastic properties of single-crystal fayalite Fe2SiO4. Phys Chem Minerals 16:186–198

    Google Scholar 

  • Guntherschulze A, Keller F (1932) Die Dielektrizitätskonstanten einer Anzahl Oxyde. Z Physik 75:78–83

    Google Scholar 

  • Hewlett-Packard (1984) Operating Manual for 4275A Multi-Frequency LCR Meter. Yokogawa-Hewlett-Packard Ltd., Tokyo

    Google Scholar 

  • Kinney TB, O'Keeffe M (1969) The dielectric and restrahlen parameters of MnO. Solid State Commun 7:977–978

    Google Scholar 

  • Kip AF (1962) Fundamentals of electricity and magnetism. McGraw-Hill, New York, pp 78–103

    Google Scholar 

  • Lasaga AC, Cygan RT (1982) Electronic and ionic polarizabilities of silicate minerals. Am Mineral 67:328–334

    Google Scholar 

  • Lorentz L (1880a) Über die Refraktionskonstanten. Ann Phys Chem 11:70–103

    Google Scholar 

  • Lorenz HA (1980b) Über die Beziehung zwischen der Fortpflanzungsgeschwindigkeit des Lichtes und der Körperdichte. Ann Phys Chem 9:641–645

    Google Scholar 

  • Marler B (1988) On the relationship between refractive index and density of SiO2 polymorphs. Phys Chem Minerals 16:286–290

    Google Scholar 

  • Megaw HD (1957) Ferroelectricity in crystals. Methuen, London, pp 165–178

    Google Scholar 

  • Narayana Rao, DAAS (1949) Ionic polarization in crystals: additivity in double salts. Proc Ind Acad Sci 30A: 317–319

    Google Scholar 

  • Olhoeft GR (1981) Electrical properties of rocks. In: Touloukian YS et al. (eds) Physical properties of rocks and minerals. McGraw-Hill, New York, pp 257–329

    Google Scholar 

  • Plendl JN, Mansur LC, Mitra SS, Chang IF (1969) Reststrahlen spectrum of MnO. Solid State Commun 7:109–111

    Google Scholar 

  • Rao KV, Smakula A (1965) Dielectric properties of cobalt oxide, nickel oxide and their mixed crystals. J Appl Phys 36:2031–2038

    Google Scholar 

  • Roberts R (1949) Dielectric constants and polarization of ions in simple crystals and barium titanate. Phys Rev 76:1215–1220

    Google Scholar 

  • Roberts R (1950) A theory of dielectric polarization in alkali halide crystals. Phys Rev 77:258–263

    Google Scholar 

  • Roberts R (1951) Polarizabilities of ions in perovskite-type crystals. Phys Rev 81:865–868

    Google Scholar 

  • Samokvalov AA (1962) Ultra-high frequency dielectric properties of a group of oxides of 3d transition metals. Sov Phys Sol St 3:2613–2618

    Google Scholar 

  • Santoro RP, Newnham RE, Nomura S (1966) Magnetic properties of Mn2SiO4 and Fe2SiO4. J Phys Chem Solids 27:655–666

    Google Scholar 

  • Seehra MS, Helmick RE, Srinivasan G (1986) Effect of temperature and antiferromagnetic ordering on the dielectric constants of MnO and MnF2. J Phys C Sol St 19:1627–1635

    Google Scholar 

  • Shannon RD (1990) Factors affecting the dielectric constants of oxides and fluorides. Proceedings of the International Conference on the Chemistry of Electronic Ceramic Materials. Jackson Hole, Wyoming. Aug., pp 17–22

  • Shannon RD, Subramanian MA (1989) Dielectric constants of chrysoberyl, spinel, phenacite and forsterite and the oxide additivity rule. Phys Chem Minerals 16:747–751

    Google Scholar 

  • Shannon RD, Subramanian MA, Mariano AM, Rosman GR (1989) Mineral dielectric constants and the oxide additivity rule. Proc. Mater. Res. Soc. Symposium on Materials for MagnetoOptic Data Storage, San Diego, April 24–27

  • Shannon RD, Subramanian MA, Allik TH, Kimura H, Kokta MR, Randles MH, Rossman GR (1990) Dielectric constants of yttrium and rare earth garnets, the polarizability of gallium oxide and the oxide additivity rule. J Appl Phys 67:3798–3802

    Google Scholar 

  • Subramanian MA, Shannon RD, Chai BHT, Abraham MM, Wintersgill MC (1989) Dielectric constants of BeO, MgO and CaO using the two-terminal method. Phys Chem Minerals 16:741–746

    Google Scholar 

  • Suwa K (1964) Mineralogy of fayalite with special reference to its thermal and thermodynamic properties. J Earth Sci Nagoya Univ 12:129–134

    Google Scholar 

  • Szigeti B (1949) Polarizability and dielectric constant of ionic crystals. Trans Faraday Soc 45:155–166

    Google Scholar 

  • Takei H (1976) Czochralski growth of Mn2SiO4 (tephroite) single crystal and its properties. J Cryst Gr 34:125–131

    Google Scholar 

  • Takei H (1978) Growth of fayalite (Fe2SiO4) single crystals by the floating zone method. J Cryst Growth 43:463–468

    Google Scholar 

  • Tessman JR, Kahn AH, Shockley W (1953) Electronic polarizabilities of ions in crystals. Phys Rev 92:890–895

    Google Scholar 

  • Thomas GA, Gapizzi M, DeRosa F (1980) Optical measurements of the approach to the Anderson transition. Phil Mag 42B:913–831

    Google Scholar 

  • Xiao J (1985) The effects of mineral composition and structure on dielectric constants. Acta Mineral Sinica 5:331–337

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Contribution No. 5535

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shannon, R.D., Subramanian, M.A., Hosoya, S. et al. Dielectric constants of tephroite, fayalite and olivine and the oxide additivity rule. Phys Chem Minerals 18, 1–6 (1991). https://doi.org/10.1007/BF00199037

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00199037

Keywords

Navigation