Skip to main content
Log in

Spectral sensitivities including the ultraviolet of the passeriform bird Leiothrix lutea

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

Spectral sensitivity functions of a passeriform bird, the Red-billed Leiothrix Leiothrix lutea (Timalidae) were determined in a behavioural test under different background illuminations.

  1. 1.

    With photopic illumination the spectral sensitivity of Leiothrix lutea covered the measured range from 320 nm to 680 nm. Four peaks of spectral sensitivity were found: a UV (370 nm), a blue (460 nm), a green (530 nm) and a red (620 nm) sensitivity peak. The spectral sensitivity was highest in the UV and decreased (over the blue and the green peak) towards the red sensitivity peak. The 4 peaks of spectral sensitivity point to 4 underlying cone mechanisms under photopic illumination and thus to a probably tetrachromatic colour vision of Leiothrix lutea.

  2. 2.

    With mesopic illumination the bird's spectral sensitivity covered the measured range from 320 nm to 680 nm. Neural interactions between cone and rod sensitivities are likely to determine this function. The increased overall sensitivity and a dominant sensitivity peak at 500 nm point to a typical rhodopsin as the likely rod photopigment.

  3. 3.

    Different aspects of the biological significance of the high UV sensitivity are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Able KP (1989) Skylight polarization patterns and the orientation of migratory birds. J Exp Biol 141:241–256

    Google Scholar 

  • Bowmaker JK (1980) Birds see ultraviolet light. Nature 284:306

    Google Scholar 

  • Bowmaker JK, Kunz YW (1987) Ultraviolet receptors, tetrachromatic colour vision and retinal mosaics in the brown trout (Salmo trutta): age-dependent changes. Vision Res 27:2101–2108

    Google Scholar 

  • Bowmaker JK, Martin GR (1985) Visual pigments and oil droplets in the penguin, Spheniscus humboldti. J Comp Physiol A 156:71–77

    Google Scholar 

  • Bridges CDB (1967) Spectroscopic properties of porphyropsin. Vision Res 7:349–369

    Google Scholar 

  • Burkhardt D (1982) Birds, berries and the UV. Naturwissenschaften 69:153–157

    Google Scholar 

  • Burkhardt D (1989) A bird's eye view of feathers. J Comp Physiol A 164:787–796

    Google Scholar 

  • Burkhardt D, Maier E (1989) The spectral sensitivity of a passerine bird is highest in the UV. Naturwissenschaften 76:82–83

    Google Scholar 

  • Chen DM, Goldsmith TH (1986) Four spectral classes of cone in the retinas of birds. J Comp Physiol A 159:473–479

    Google Scholar 

  • Chen DM, Collins JS, Goldsmith TH (1984) The ultraviolet receptor of bird retinas. Science 225:337–340

    Google Scholar 

  • Eisner T, Silberglied RE, Aneshansley D, Carrel JE, Howland HC (1969) Ultraviolet video-viewing: the television camera as an insect eye. Science 166:1172–1174

    Google Scholar 

  • Goldsmith TH (1980) Hummingbirds see near ultraviolet light. Science 207:786–788

    Google Scholar 

  • Goldsmith TH (1990) Optimization, constraint, and history in the evolution of eyes. Q Rev Biol 65:281–322

    Google Scholar 

  • Goldsmith TH, Collins JS, Licht S (1984) The cone oil droplets of avian retinas. Vision Res 24:1661–1671

    Google Scholar 

  • Govardovskij VI, Zueva LV (1977) Visual pigments of chicken and pigeon. Vision Res 17:537–543

    Google Scholar 

  • Hawryshyn CW, McFarland WN (1987) Cone photoreceptor mechanism and the detection of polarized light in fish. J Comp Physiol A 160:459–465

    Google Scholar 

  • Helbig AJ (1990) Depolarization of natural skylight disrupts orientation of an avian nocturnal migrant. Experientia 46:755–757

    Google Scholar 

  • Heiversen O von (1972) Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. J Comp Physiol 80:439–472

    Google Scholar 

  • Huth HH, Burkhardt D (1972) Der spektrale Sehbereich eines Violettohr-Kolibris. Naturwissenschaften 59:650

    Google Scholar 

  • Jane SD, Bowmaker JK (1988) Tetrachromatic colour vision in the duck (Anas platyrhynchos L): microspectrophotometry of visual pigments and oil droplets. J Comp Physiol A 162:225–235

    Google Scholar 

  • Kirschfeld K (1982) Carotenoid pigments: their possible role in protecting against photooxidation in eyes and photoreceptor cells. Proc R Soc Lond B 216:71–85

    Google Scholar 

  • Kreithen ML, Eisner T (1978) Ultraviolet light detection by the homing pigeon. Nature 272:347–348

    Google Scholar 

  • Le Grand Y (1972) Spectral luminosity. In: Jameson D, Hurvich LM (eds) Visual psychophysics (Handbook of sensory physiology, VII/4). Springer, Berlin Heidelberg New York, pp 413–433

    Google Scholar 

  • Lutz FE (1933) “Invisible” colors of flowers and butterflies. Natural History XXXIII: 565–576

    Google Scholar 

  • Maier EJ (1990) Verhaltensphysiologische Untersuchungen zum Farbensehen des Sonnenvogels (Leiothrix lutea, Timalidae, Passeriformes): Spektrale Empfindlichkeit und selektive chromatische Adaptation unter Berücksichtigung des UV-Bereiches. Doctoral thesis, Univ Regensburg

  • Neumeyer Ch (1988) Das Farbensehen des Goldfisches. Georg Thieme, Stuttgart New York

    Google Scholar 

  • Neumeyer Ch, Wietsma JJ, Spekreijse H (1991) Seperate processing of “color” and “brightness” in goldfish. Vision Res 31:537–549

    Google Scholar 

  • Parrish J, Smith R, Benjamin R, Ptacek J (1981) Near ultraviolet light reception in mallards and passeriformes. Trans Kans Acad Sci 84:147

    Google Scholar 

  • Reed JR (1987) Scotopic and photopic spectral sensitivities of boobies. Ethology 76:33–55

    Google Scholar 

  • Remy M, Emmerton J (1989) Behavioral spectral sensitivities of different retinal areas in pigeons. Behav Neurosci 103:170–177

    Google Scholar 

  • Ripps A, Weale RA (1976) In: Davson H (ed) The eye, vol 2A, Visual function in man. Academic Press, New York London San Francisco, pp

    Google Scholar 

  • Rossel S (1987) Das Polarisationssehen der Bienen. Naturwissenschaften 74:53–62

    Google Scholar 

  • Schwind R (1985) Sehen unter und über Wasser. Sehen von Wasser: Das Sehsystem eines Wasserinsektes. Naturwissenschaften 72:343–352

    Google Scholar 

  • Silberglied RE (1979) Communication in the ultraviolet. Annu Rev Ecol Syst 10:373–398

    Google Scholar 

  • Thielcke G, Thielcke H (1969) Die sozialen Funktionen verschiedener Gesangsformen des Sonnenvogels (Leiothrix lutea). Z Tierpsychol 27:177–185

    Google Scholar 

  • Waldvogel JA (1990) The bird's eye view. Am Sci 78:342–353

    Google Scholar 

  • Wessels RAH (1974) Tetrachromatic vision in the daw. Doctoral thesis, Univ Utrecht

  • Wright AA (1972) The influence of ultraviolet radiation on the pigeon's color discrimination. J Exp Anal Behav 17:325–337

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maier, E.J. Spectral sensitivities including the ultraviolet of the passeriform bird Leiothrix lutea . J Comp Physiol A 170, 709–714 (1992). https://doi.org/10.1007/BF00198981

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198981

Key words

Navigation