Skip to main content
Log in

Oscillatory binocular system and temporal segmentation of stereoscopic depth surfaces

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A dynamical neural network model of binocular stereopsis is proposed to solve the problem of segmentation which remains ambiguous even when the problem of binocular correspondence is solved. Being compatible with the recent neurophysiological findings (Engel et al. 1991), the model assumes that neural cells show oscillatory activities and that segmentation into a coherent depth surface is coded by synchronization of activities. Employing appropriate constraints for segmentation, the present model shows proper segmentation of depth surfaces and also solves segmentational ambiguity caused by a gap. It is newly shown that binocularly-unmatched monocular cells are discriminated in temporal segmentation of monocular cells caused by recurrent interactions between monocular and binocular cells. Integrative interactions with the other visual components through temporal segmentation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akerstrom RA, Todd JT (1988) The perception of stereoscopic transparency. Percept Psychophys 44:421–432

    Google Scholar 

  • Amari S, Arbib MA (1977) Competition and cooperation in neural nets. In: Metzler J (eds) System neuroscience. Academic Press, New York, pp 119–165

    Google Scholar 

  • Barlow HB, Blakemore C, Pettigrew JD (1967) The neural mechanism of binocular depth discrimination. J Physiol 193:327–342

    Google Scholar 

  • Bolz J, Gilbert CD, Wiesel TN (1989) Pharmacological analysis of cortical circuitry. Trends NeuroSci 8:292–296

    Google Scholar 

  • Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Biol Cybern 60:121–130

    Google Scholar 

  • Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1990) Feature linking via synchronization among distributed assemblies: simulations of results from cat visual cortex. Neural Comp 2:293–307

    Google Scholar 

  • Engel AK, Konig P, Singer W (1991) Direct physiological evidence for scene segmentation by temporal coding. Proc Natl Acad Sci USA 88:9136–9140

    Google Scholar 

  • Ferster D (1981) A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex. J Physiol 311:623–655

    Google Scholar 

  • Freeman WJ (1987) Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol Cybern 56:139–150

    Google Scholar 

  • Frisby JP (1980) Seeing: Illusion, brain and mind. Oxford University Press, Oxford

    Google Scholar 

  • Gilbert CD (1985) Horizontal integration in the neocortex. Trends NeuroSci 8:160–165

    Google Scholar 

  • Gilbert CD, Wiesel TN (1979) Morphology and intracortical projections of functionally characterised neurons in the cat visual cortex. Nature 280:120–125

    Google Scholar 

  • Gilbert CD, Wiesel TN (1989) Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex. J Neurosci 9:2432–2442

    Google Scholar 

  • Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86:1698–1702

    Google Scholar 

  • Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337

    Google Scholar 

  • Grossberg S, Somers D (1991) Synchronized oscillations during cooperative feature linking in a cortical model of visual perception. Neural Networks 4:453–466

    Google Scholar 

  • Hirsch JA, Gilbert CD (1991) Synaptic physiology of horizontal connections in the cat's visual cortex. J Neurosci 11:1800–1809

    Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Proc R Soc London Ser B 198:1–59

    Google Scholar 

  • Julesz B (1971) Foundations of cyclopean perception. University of Chicago Press, Chicago

    Google Scholar 

  • Julesz B (1984) Toward an axiomatic theory of preattentive vision. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic aspects of neocortical function. Wiley, New York, pp 585–612

    Google Scholar 

  • Kammen DM, Holmes PJ, Koch C (1989) Cortical architecture and oscillations in neuronal networks: feedback versus local coupling. In: Cotterill RMJ (eds) Models of brain function. Cambridge Univ Press, Cambridge, pp 273–284

    Google Scholar 

  • Koffka K (1935) Principles of Gestalt psychology. Routledge & Kegan Paul, London

    Google Scholar 

  • Konig P, Schillen TB (1991) Stimulus-dependent assembly formation of oscillatory responses: I. synchronization. Neural Comp 3:155–166

    Google Scholar 

  • LeVay S, Voigt T (1988) Ocular dominance and disparity coding in cat visual cortex. Visual Neurosci 1:395–414

    Google Scholar 

  • Li Z, Hopfield JJ (1989) Modeling the olfactory bulb and its neural oscillatory processing. Biol Cybern 61:379–392

    Google Scholar 

  • Livingston MS, Hubel DH (1987) Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci 7:3416–3468

    Google Scholar 

  • Malsburg C von der (1985) Nervous structures with dynamical links. Ber Bunsenges Phys Chem 89:703–710

    Google Scholar 

  • Malsburg C von der, Schneider W (1986) A neural cocktail-party processor. Biol Cybern 54:29–40

    Google Scholar 

  • Marr D (1982) Vision. Freeman, New York

    Google Scholar 

  • Marr D, Poggio T (1976) Cooperative computation of stereo disparity. Science 194:283–287

    Google Scholar 

  • Marr D, Palm G, Poggio T (1978) Analysis of a cooperative stereo algorithm. Biol Cybern 28:223–239

    Google Scholar 

  • Martin KAC, Somogyi P, Whitteridge D (1983) Physiological and morphological properties of identified basket cells in the cat's visual cortex. Exp Brain Res 50:193–200

    Google Scholar 

  • Nakayama K, Shimojo S, Silverman GH (1989) Stereoscopic depth: its relation to image segmentation, grouping, and the recognition of occluded objects. Perception 18:55–68

    Google Scholar 

  • Nakazawa H (1990) Roles of surface in binocular stereopsis. Master's thesis, University of Tokyo (in Japanese)

  • Neisser U (1967) Cognitive psychology. Appleton-Century-Crofts, New York

    Google Scholar 

  • Poggio GF, Fischer B (1977) Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. J Neurophysiol 40:1392–1405

    Google Scholar 

  • Poggio GF, Gonzalez F, Krause F (1988) Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity. J Neurosci 8:4531–4550

    Google Scholar 

  • Poggio GF, Motter BC, Squatrito S, Trotter Y (1985) Responses of neurons in visual cortex (V1 and V2) of the alert macaque to dynamic random-dot stereograms. Vision Res 25:397–406

    Google Scholar 

  • Pollard SB, Mayhew JEW, Frisby JP (1985) PMF: A stereo correspondence algorithm using a disparity gradient limit. Perception 14:449–470

    Google Scholar 

  • Prazdny K (1985) Detection of binocular disparities. Biol Cybern 52:93–99

    Google Scholar 

  • Ramachandran VS (1986) Capture of stereosis and apparent motion by illusory contours. Percept Psychophys 39:361–373

    Google Scholar 

  • Reitboeck HJ, Eckhorn R, Arndt M, Dicke P (1990) A model for feature linking via correlated neural activity. In: Haken H, Stadler M (eds) Synergetics of cognition. Springer, Berlin Heidelberg New York, pp 112–125

    Google Scholar 

  • Schuster HG, Wagner P (1990) A model for neural oscillations in the visual cortex. Biol Cybern 64:77–82

    Google Scholar 

  • Shimizu H, Yamaguchi Y (1987) Synergetic computers and holonics — information dynamics of a semantic computer. Phys Scr 36:970–985

    Google Scholar 

  • Shimizu H, Yamaguchi Y (1991) The self-organization of neuronal representations of semantic information of vision. In: Holden AV, Kryukov VI (eds) Neurocomputers and attention I: neurobiology, synchronization and chaos. Manchester University Press, Manchester New York, pp 383–403

    Google Scholar 

  • Shimizu H, Yamaguchi Y, Tsuda I, Yano M (1985) Pattern recognition based on holonic information dynamics towards synergetic computers. In: Haken H (eds) Complex systems — operational approaches. Springer, Berlin Heidelberg New York, pp 225–239

    Google Scholar 

  • Somogyi P, Cowey A, Kisvarday ZF, Freund TF, Szentagothai J (1983) Retrograde transport of gamma-amino[3H]butyric acid reveals specific interlaminar connections in the striate cortex of monkey. Proc Natl Acad Sci USA 80:2385–2389

    Google Scholar 

  • Sporns O, Tononi G, Edelman GM (1991) Modeling perceptual grouping and figure-ground segregation by means of active reentrant connections. Proc Natl Acad Sci USA 88:129–133

    Google Scholar 

  • Szentagothai J (1983) The modular architectonic principle of neural centers. Rev Physiol Biochem Pharmacol 98:11–61

    Google Scholar 

  • Treisman A (1986) Properties, parts, and objects. In: Boff KR, Kaufman L, Thomas JP (eds) Handbook of perception and human performance, vol 2. Wiley, New York, Chap 35, pp 1–70

    Google Scholar 

  • Yano M, Suzuki S, Shimizu H (1988) The model of color recognition. IEICE Technical Report (Japan) MBE87-148 (in Japanese)

  • Wilson MA, Bower JM (1991) A computer simulation of oscillatory behavior in primary visual cortex. Neural Comp 3:498–509

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murata, T., Shimizu, H. Oscillatory binocular system and temporal segmentation of stereoscopic depth surfaces. Biol. Cybern. 68, 381–391 (1993). https://doi.org/10.1007/BF00198771

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198771

Keywords

Navigation