Skip to main content
Log in

A combined temperature dependent57Fe Mössbauer and single crystal X-ray diffraction study of synthetic almandine: evidence for the Gol'danskii-Karyagin effect

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Synthetic almandine garnet, Fe3Al2Si3O12, has been studied by temperature — dependent single crystal X-ray diffraction and57Fe Mössbauer spectroscopy. The Fe2+ doublet in almandine is characterized by a small asymmetry between the high and low-velocity peaks that decreases in magnitude with decreasing temperature from 420 to 15 K. The X-ray results show that the Fe2+ cation is dynamically disordered with an anisotropic motion within the eight-coordinated site in garnet. The magnitudes of the X-ray determined mean-square-vibrational amplitudes of this motion parallel,x , and perpendicular,x , to the principle axes of the electric field gradient give a calculated angular dependence of the electric quadrupole interaction of theI 1/2 toI 3/2 transitions that agree with the experimentally measured peak ratios. This is the first recognition of anisotropic recoil free fraction of57Fe in silicates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amthauer G, Annersten H, Hafner SS (1976) The Mössbauer spectrum of57Fe in silicate garnets. Z Kristallogr 143:14–55

    Google Scholar 

  • Armbruster Th (1986) Crystal structure refinement and thermal expansion of a Li, Na, Be-cordierite between 100 and 550 K. Z Kristallogr 174:205–217

    Google Scholar 

  • Armbruster Th, Bürgi HB, Kunz M, Gnos E, Brönnimann S, Lienert C (1990) Variation of displacement parameters in structure refinements of low albite. Amer Mineral 75:135–140

    Google Scholar 

  • Armbruster Th, Geiger CA, Lager GA (1992) Single crystal X-ray structure study of synthetic pyrope-almandine garnets at 100 and 293 K. Amer Mineral 77:518–527

    Google Scholar 

  • Bancroft GM, Maddock AG, Burns RG (1967) Application of the Mössbauer effect to silicate mineralogy. I. Iron silicates of known crystal structure. Geochim Cosmochim Acta 31:2219–2246

    Google Scholar 

  • Born L, Zemann J (1964) Abstandsberechnungen und gitterenerge-ische Berechnungen an Granaten. Beitr Mineral Petrog 10:2–23

    Google Scholar 

  • Chandrasekhar K, Bürgi HB (1984) Dynamic processes in crystals examined through difference vibrational parametersΔU: The low-spin-high-spin transition in Tris(dithiocarbamato)iron(III) complexes. Acta Crystallogr B40:387–397

    Google Scholar 

  • Enraf-Nonius (1983) Structure determination package (SDP). Enraf-Nonius, Delft, The Netherlands

    Google Scholar 

  • Geiger CA, Brearley A, Amthauer G, Ross CRII (in preparation) Synthesis of almandine garnet and characterization by57Fe Mössbauer and Single crystal FTIR spectroscopy, powder X-ray refinement and transmission electron microscopy: The role of defects

  • Gol'danskii VI, Makarov EF, Khrapov VV (1963) On the difference in two peaks of Quadrupole splitting in Mössbauer spectra. Phys Lett 3:344–346

    Google Scholar 

  • Gol'danskii VI (1964) The Mössbauer effect and its applications in chemistry. Van Nostrand, New York

    Google Scholar 

  • Gonser K (1975) From a strange effect to Mössbauer spectroscopy. In: Gonser K (ed) Topics in Applied Physics, vol 5, pp 1–51. Mössbauer Spectroscopy. Springer, Berlin Heidelberg NewYork

    Google Scholar 

  • Greenwood NN, Gibb TC (1971) Mössbauer spectroscopy pp 75–76. Chapman and Hall, London

    Google Scholar 

  • Herber RH, Chandra S (1970) Gol'danskii-Karyagin effect in Dimethyl Tin Difluoride. J Chem Phys 52:6045–6048

    Google Scholar 

  • Hirshfeld FL (1976) Can X-ray data distinguish bonding effects from vibrational smearing? Acta Crystallogr A 32:239–344

    Google Scholar 

  • Hummel W, Hauser J, Bürgi HB (1990) PEANUT a computer-graphics program to represent atomic displacement parameters. J Mol Graph 8:214–220

    Google Scholar 

  • Kunz M, Armbruster Th (1990) Difference displacement parameters in alkali feldspars: Effects of (Si, Al) order-disorder. Amer Mineral 75:141–149

    Google Scholar 

  • Lyubutin IS, Dodokin AP (1971) Temperature dependence of the Mössbauer effect for Fe2+ in dodecahedral coordination in garnet. Sov Phys Crystallogr 15:1091–1092

    Google Scholar 

  • Menzer G (1928) Die Kristallstruktur der Granate. Z Kristallogr 69:300–396

    Google Scholar 

  • Murad E, Wagner FE (1987) The Mössbauer spectrum of almandine. Phys Chem Minerals 14:264–269

    Google Scholar 

  • Novak GA, Gibbs GV (1971) The crystal chemistry of the silicate garnets. Am Mineral 56:791–825

    Google Scholar 

  • Prandl W (1971) Die magnetische Struktur und die Atomparameter des Almandins Al2Fe3(SiO4)3. Z Kristallogr 134:333–343

    Google Scholar 

  • Prandl W, Wagner F (1971) Die Orientierung des elektrischen Feld-gradienten und das innere Magnetfeld beim Almandin. Z Kristallogr 134:344–349

    Google Scholar 

  • Prandl W (1971) Die magnetische Struktur und die Atomparameter des Almandins Al2Fe3(SiO4)3. Z Kristallogr 134:333–343

    Google Scholar 

  • Seiler P, Schweizer WB, Dunitz JD (1984) Parameter refinement for tetrafluorotherephthalonitrile at 98 K: making the best of a bad job. Acta Crystallogr B40:319–327

    Google Scholar 

  • Zucker UH, Perenthaler E, Kuhs WF, Bachmann R, Schulz H (1983) PROMETHEUS: A program system for investigation of anharmonic thermal vibrations in crystals. J Appl Crystallogr 16:358

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiger, C.A., Armbruster, T., Lager, G.A. et al. A combined temperature dependent57Fe Mössbauer and single crystal X-ray diffraction study of synthetic almandine: evidence for the Gol'danskii-Karyagin effect. Phys Chem Minerals 19, 121–126 (1992). https://doi.org/10.1007/BF00198609

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198609

Keywords

Navigation