Skip to main content
Log in

High-temperature heat capacity of Co3O4 spinel: thermally induced spin unpairing transition

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

A strong anomaly was found in the heat capacity of Co3O4 between 1000 K and the decomposition temperature. This anomaly is not related to the decomposition of Co3O4 to CoO. The measured entropy of transition, ΔS=46±4 J mol-1 K-1 of Co3O4, supports the interpretation that this anomaly reflects a spin unpairing transition in octahedrally coordinated Co3+ cations. Experimental values of heat capacity, heat content and entropy of Co3O4 in the high temperature region are provided. The enthalpy of the spin unpairing transition is 53±4 kJ mol-1 of Co3O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chenavas J, Joubert JC, Marezio M (1971) Low spin — High spin state transition in high pressure cobalt sequioxide. Sol State Commun 9:1057–1060

    Google Scholar 

  • Chibrova FKh, Belova ID, Zakharin DS, Reiman SI, Roginskaya YuE, Venevtsev (1984) High-spin Co(III) in Co3−xO4 films with defects. Fiz Tverd Tela 26:890–893

    Google Scholar 

  • Cossee P (1958) Magnetic properties of cobalt in oxide lattices. J Inorg Nucl Chem 8:483–488

    Google Scholar 

  • Flamand R (1984) Decomposition thermique de l'oxyde de cobalt Co3O4. High Temperature — High Pressure 16:323–328

    Google Scholar 

  • Gaune-Escard M, Bros JP (1974) High temperature calorimetry up to 1800 K. Can Met Quat 13:335–338

    Google Scholar 

  • Hill RJ (1982) in O'Neill H.St.C (1985) Thermodynamics of Co3O4: a possible electron spin unpairing transition in Co3+. Phys Chem Minerals 12:149–154

    Google Scholar 

  • Johnson KH (1973) Scattered wave theory of the chemical bond. Adv Quant Chem 7:143–185

    Google Scholar 

  • Kale GM, Pandit SS, Jacob KT (1988) Thermodynamics of cobalt (II,III) oxide (Co3O4): evidence of phase transition. Transact J Inst Met 29:125–132

    Google Scholar 

  • Khriplovich LM, Kholopov GV, Paukov IE (1982) Heat capacity and thermodynamic properties of Co3O4 from 5 to 307 K.Low temperature transition. J Chem Thermodyn 14:207–217

    Google Scholar 

  • King EG, Christiansen Au Jr. (1958) Heat content above 298.15 K of oxides of cobalt and nickel. J Am Chem Soc 80:1800–1801

    Google Scholar 

  • Knopp O, Reid KIG, Sutarano, Nakagawa Y (1968) Chalkogenides of the transition elements.VI. X-ray, neutron and magnetic investigation of the spinels Co3O4, NiCo2O4, CoS4 and NiCo2S4. Can J Chem 46:3463–3476

    Google Scholar 

  • Kaumoto K, Yanagida H (1981) Electrical conduction in pure and Li-substituted Co3O4. J Am Ceram Soc 64:C156–157

    Google Scholar 

  • Lange RA, DeYoreo JJ, Navrotsky A (1991) Scanning calorimetric measurement of heat capacity during incongruent melting of diopside. Am Mineral 76:904–912

    Google Scholar 

  • Liu X, Prewitt ChT (1990) High-temperature x-ray diffraction study of Co3O4: transition from normal to disorder spinel. Phys Chem Minerals 17:168–172

    Google Scholar 

  • Madhusudan WH, Jagannathan K, Ganguly P, Rao CNR (1980) A magnetic susceptibility study of spin-state transitions in rare-earth trioxocobaltites (III). J Chem Soc Dalton Trans:1397–1400

  • Navrotsky A, Davies PK (1981) Cesium chloride versus nickel arsenide as possible structures for (Mg,Fe)O in the lower mantle. J Geophys Res 86:3689–3694

    Google Scholar 

  • O'Bryan HM Jr, Parravano G (1965) The univariant equilibrium between the oxides of cobalt. Proceedings of the 5th International Conference on Reactivity of Solids, p 256

  • O'Neill H.St.C (1985) Thermodynamics of Co3O4: a possible electron spin unpairing transition in Co3+. Phys Chem Minerals 12:149–154

    Google Scholar 

  • Raccah PM, Goodenough JB (1967) First — order localized — electron collective electron transition in LaCoO3. Phys Rev 155:932–943

    Google Scholar 

  • Robie RA, Hemingway BS, Fisher JR (1978) Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 pascals) pressure and at higher temperatures. US Geological Survey Bulletin 1452

  • Roth WL (1964) The magnetic structure of Co3O4. J Phys Chem Solids 25:1–10

    Google Scholar 

  • Scheerlinck D, Hautecler S (1976) Magnetic interactions in Co3O4. Phys Stat Sol (b) 73:223–228

    Google Scholar 

  • Seitz F (1987) The modern theory of solids. Dover Publications, New York

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767

    Google Scholar 

  • Sherman DM (1985) The electronic structures of Fe3+ coordination sites in iron oxides; applications to spectra, bonding and magnetism. Phys Chem Minerals 12:161–175

    Google Scholar 

  • Sherman DM (1988) High-spin to low-spin transition of iron(II) oxides at high pressures: possible effects on the physics and chemistry of the lower mantle. In: Structural and magnetic phase transitions in minerals. Springer, Berlin Heidelberg NewYork

    Google Scholar 

  • Sherman DM (1991) The high-pressure electronic structure of magnesiowustite, (Mg,Fe)O: Applications to the physics and chemistry of the lower mantle. J Geophys Res 9:14299–14312

    CAS  PubMed  Google Scholar 

  • Tossell JA, Vaughan DJ, Johnson KH (1974) Electronic structure of rutile, wustite and hematite from molecular orbital calculations. Am Mineral 59:319–334

    Google Scholar 

  • Touzelin B (1978) Etude par diffraction des rayons X a haute temperature, en atmosphere controlee, des oxydes de cobalt et de nickel. Rev Int Hautes Temp Refract 15:33–41

    Google Scholar 

  • Ziegler D, Navrotsky A (1986) Direct measurement of the enthalpy of fusion of diopside. Geochim Cosmochim Acta 50:2461–2466

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mocala, K., Navrotsky, A. & Sherman, D.M. High-temperature heat capacity of Co3O4 spinel: thermally induced spin unpairing transition. Phys Chem Minerals 19, 88–95 (1992). https://doi.org/10.1007/BF00198606

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198606

Keywords

Navigation