Skip to main content
Log in

A Raman spectroscopic study of shocked single crystalline quartz

  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

We have carried out a Raman Spectroscopic study of single crystalline quartz samples shocked to peak pressures up to 31.4GPa. Samples shocked to above 22 GPa show shifts in peak positions consistent with the quartz being under tensile stress, and new broad bands associated with the formation of high density SiO2 glass appear in the spectra. These changes are accompanied by an increase in the lattice parameters of the quartz. Formation of the diaplectic glass could be due to a metastable melting event, or spinodal lattice collapse on attainment of a mechanical stability limit of crystalline quartz, as suggested by previous studies of pressure-induced amorphization in static pressurization experiments on SiO2 and GeO2 polymorphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahrens TJ, Rosenberg JT (1968) Shock metamorphism: experiments on quartz and plagioclase. In: Shock Metamorphism of Natural Materials, French BM, Short NM (eds), p 59–81. Mono Book Corp, Baltimore

    Google Scholar 

  • Ashworth JR, Schneider H (1985) Deformation and transformation in experimentally shock-loaded quartz. Phys Chem Minerals 11:241–249

    Google Scholar 

  • Bates JB, Hendricks RW, Shaffer LB (1974) Neutron irradiation effects and structure of noncrystalline SiO2. J Chem Phys 61:4163–4179

    Google Scholar 

  • Bridgman PW, Simon I (1953) Effects of very high pressure on glass. J Appl Phys 24:405–413

    Google Scholar 

  • Carter NL (1965) Basal deformation lamellae, a criterion for recognition of impactites. Am J Sci 263:786–806

    Google Scholar 

  • Carter NL (1971) Static deformation of silica and silicates. J Geophys Res 76:5514–5540

    Google Scholar 

  • Chao ECT (1967) Shock effects in certain rock-forming minerals. Science 156:192–202

    Google Scholar 

  • Chelikowsky JR, King HE, Troullier N, Martins JL, Glinnemann J (1990) Structural properties of α-quartz near the amorphous transition. Phys Rev Lett 65:3309–3312

    Google Scholar 

  • Christie JM, Griggs DT, Carter NL (1964) Experimental evidence of basal slip in quartz. J Geol 72:734–756

    Google Scholar 

  • DeCarli PS, Jamieson JC (1959) Formation of an amorphous form of quartz under shock conditions. J Chem Phys 31:1675–1676

    Google Scholar 

  • DeCarli PS, Milton DJ (1965) Stishovite: synthesis by shock wave. Science 147:144–145

    Google Scholar 

  • Engelhardt Wv, Bertsch W (1969) Shock induced planar deformation structures in quartz from the Ries crater, Germany. Contrib Mineral Petrol 20:203–234

    Google Scholar 

  • Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc A241:376–396

    Google Scholar 

  • Eshelby JD (1959) The elastic field outside an ellipsoid inclusion. Proc R Soc A252:561–569

    Google Scholar 

  • Galeener FL (1982) Planar rings in vitreous silica. J Non-Cryst Solid 49:53–62

    Google Scholar 

  • Grady DE (1977) Processes occurring in shock compression of rocks and minerals. In: Manghnani M, Akimoto S (eds) High Pressure Research: Applications in Geophysics. Academic Press, New York, pp 389–438

    Google Scholar 

  • Gratz A (1984) Deformation in laboratory-shocked quartz. J Non-Cryst Solid 67:543–558

    Google Scholar 

  • Hazen RM, Finger LW, Hemley RJ, Mao HK (1989) High-pressure crystal chemistry and amorphization of α-quartz. Solid State Commun 72:507–511

    Google Scholar 

  • Hemley RJ, Mao HK, Bell PM, Mysen BO (1986) Raman spectroscopy of SiO2 glass at high pressure. Phys Rev Lett 57:747–750

    Google Scholar 

  • Hemley RJ (1987) Pressure dependence of Raman spectra of SiO2 polymorphs: α-quartz, coesite and stishovite. In: Manghnani M, Syono Y (eds) High-Pressure Research in Mineral Physics, Terra Scientific Pub Co, Tokyo/Am Geophys Union, Washington D.C., pp 347–359

    Google Scholar 

  • Hemley RJ, Jephcoat AP, Mao HK, Ming LC, Manghnani MH (1988) Pressure-induced amorphization of crystalline silica. Nature 334:52–55

    Google Scholar 

  • Hörz F (1968) Statistical measurements of deformation structures and refractive indices in experimentally shock loaded quartz. In: Shock Metamorphism of Natural Materials, French BM, Short NM (eds), pp 243–253. Mono Book Corp, Baltimore

    Google Scholar 

  • Hörz F, Quade WL (1973) Debye-Scherrer investigations of experimentally shocked silicates. The Moon 6:45–82

    Google Scholar 

  • Jakubith M, Lehmann G (1981) An X-ray photoelectron spectroscopic study of shock-loaded quartz. Phys Chem Minerals 7:165–168

    Google Scholar 

  • Kieffer SW (1971) Shock metamorphism of the Coconino sandstone at Meteor Crater, Arizona. J Geophys Res 76:5449–5473

    Google Scholar 

  • Kleeman J, Ahrens TJ (1973) Shock-induced transition of quartz to stishovite. J Geophys Res 78:5954–5960

    Google Scholar 

  • Lambert P (1979) Fractures induced by shock in quartz and feldspar. Mineral Mag 43:527–533

    Google Scholar 

  • Lambert P, Lange MA (1984) Glasses produced by shock melting and devolatilization of hydrous silicates. J Non-Cryst Solid 67:521–542

    Google Scholar 

  • Levien L, Prewitt CT, Weidner DJ (1980) Structure and elastic properties of quartz at pressure. Am Mineral 65:920–930

    Google Scholar 

  • Lyzenga GA, Ahrens TJ (1980) Shock temperature measurements in Mg2SiO4 and SiO2 at high pressures. Geophys Res Lett 7:141–144

    Google Scholar 

  • Marsh SP (1980) LASL Shock Hugoniot Data. University of California Press, Berkeley

    Google Scholar 

  • Mashimo T, Nishii K, Soma T, Sawaoka A (1980) Some physical properties of amorphous SiO2 synthesized by shock compression of α quartz. Phys Chem Minerals 5:367–377

    CAS  Google Scholar 

  • McLaren AC, Retchford JA, Griggs DT, Christie JM (1967) Transmission electron microscope study of brazil twins and dislocations experimentally produced in natural quartz. Phys Stat Solid 19:631–644

    Google Scholar 

  • McMillan P, Piriou B, Couty R (1984) A Raman study of pressure-densified vitreous silica. J Chem Phys 81:4234–4236

    Google Scholar 

  • McMillan P (1988) Vibrational studies of amorphous SiO2. In: RAB Devine (ed) The Physics and Technology of Amorphous SiO2. Plenum Press, New York, pp 63–70

    Google Scholar 

  • McQueen RG, Fritz JN, Marsh SP (1963) On the equation of state of Stishovite. J Geophys Res 68:2319–2322

    Google Scholar 

  • Mochizuki S, Kawai N (1972) Lattice vibrational spectra of vitreous silica densified by pressure. Solid State Commun 11:763–765

    Google Scholar 

  • Mori T (1988) Inclusion problems. Appl Mech Rev 41:15–20

    Google Scholar 

  • Muller WF, Defourneaux M (1968) Deformationsstrukturen in Quarz als Indikator für Stoßwellen: eine experimentelle Unter-suchung an Quarzeinkristallen. Z Geophys 34:483–504

    Google Scholar 

  • Muller WF (1969) Elektronmikroskopischer Nachweis amorpher Bereiche in stoßwellenbeanspruchtem Quarz. Naturwissenschaften 56:279

    Google Scholar 

  • Mura T (1988) Inclusion problems. Appl Mech Rev 41:15–20

    Google Scholar 

  • O'Keeffe M, Gibbs GV (1984) Defects in amorphous silica: ab initio calculations. J Chem Phys 81:878–879

    Google Scholar 

  • Sakka S, Mackenzie JD (1969) High pressure effects on glass. J Non-Cryst Solid 1:107–142

    Google Scholar 

  • Schmitt DR, Ahrens TJ (1989) Shock temperatures in silica glass: implications for modes of shock-induced deformation, phase transformation, and melting with pressure. J Geophys Res 94:5851–5871

    Google Scholar 

  • Schneider H, Hornemann U (1976) X-ray investigations on the deformation of experimentally shock-loaded quartzes. Contrib Mineral Petrol 55:205–215

    Google Scholar 

  • Seifert FA, Mysen BO, Virgo D (1983) Raman study of densified vitreous silica. Phys Chem Glasses 24:141–145

    Google Scholar 

  • Sekine T, Akaishi M, Setaka N (1987) Fe2N-type SiO2 from shocked quartz. Geochim Cosmochim Acta 51:379–381

    Google Scholar 

  • Shapiro SM, O'Shea D, Cummins HZ (1967) Raman scattering study of the alpha-beta phase transition in quartz. Phys Rev Lett 19:361–364

    Google Scholar 

  • She CY, Masso JD, Edwards DF (1971) Raman scattering by polarization waves in uniaxial crystals. J Phys Chem Solid 32:1887–1900

    Google Scholar 

  • Short NM (1968) Experimental microdeformation of rock materials by shock pressures from laboratory-scale impacts and explosions. In: Shock Metamorphism of Natural Materials. French BM, Short NM (eds), pp 219–241. Mono Book Corp, Baltimore

    Google Scholar 

  • Stöffler D (1971) Coesite and stishovite in shocked crystalline rocks. J Geophys Res 76:5474–5488

    Google Scholar 

  • Stöffler D (1972) Deformation and transformation of rock-forming minerals by natural and eyperimental shock processes.I. Behavior of minerals under shock compression. Fortschr Mineral 49:50–113

    Google Scholar 

  • Stöffler D (1974) Deformation and transformation of rock-forming minerals by natural and experimenal shock processes.II. Physical properties of shocked minerals. Fortschr Mineral 51:256–289

    Google Scholar 

  • Susman S, Volin KJ, Liebermann RC, Gwanmesia GD, Wang Y (1990) Structual changes in irreversibly densified fused silica: implications for the chemical resistance of high level nuclear waste glasses. Phys Chem Glasses 31:144–150

    Google Scholar 

  • Tan H, Ahrens TJ (1990) Shock induced polymorphic transition in quartz, carbon, and boron nitride. J Appl Phys 67:217–224

    Google Scholar 

  • Tsuneyuki S, Matsui Y, Aoki H, Tsukada M (1989) New pressure-induced structural transformations in silica obtained by computer simulation. Nature 339:209–211

    Google Scholar 

  • Wackerle J (1962) Shock-wave compression of quartz. J Appl Phys 33:922–937

    Google Scholar 

  • Wittels M (1957) The lattice expansion of quartz due to fast neutron bombardment. Phil Mag 2:1445–1446

    Google Scholar 

  • Wolf G, McMillan P, Lambert P (1987) Quartz under negative pressure. EOS Trans Am Geophys Union 68:1455

    Google Scholar 

  • Wolf GH, Wang S, Herbst CA, Durben DJ, Oliver WF, Kang ZC, Halvorson K (1992) Pressure induced collapse of the tetrahedral framework in crystalline and amorphous GeO2. In: High Pressure Research: Applications to Earth and Planetary Sciences, Syono Y, Manghnani MH (eds) (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMillan, P.F., Wolf, G.H. & Lambert, P. A Raman spectroscopic study of shocked single crystalline quartz. Phys Chem Minerals 19, 71–79 (1992). https://doi.org/10.1007/BF00198604

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198604

Keywords

Navigation