Skip to main content
Log in

13Cα-NMR assignments of melittin in methanol and chemical shift correlations with secondary structure

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

Melittin is a naturally occurring hexacosa peptide which forms an amphiphilic helix in methanol, a random coil in water, and a tetramer of helices at basic pH or in the presence of a high salt concentration. The monomeric structure in methanol has been well characterized by proton NMR (Pastore et al. (1989) Eur. Biophys. J., 16, 363–367). In the present paper, chemical shifts of the backbone α-carbons of melittin in methanol were determined by mapping previously published α-proton shifts (Bazzo et al. (1988) Eur. J. Biochem., 173, 139–146), to natural abundance {1H}13C cross peaks appearing in the 2D heteronuclear multiple-quantum NMR spectrum. Changes in chemical shifts consequent to stepwise increases in the percentage of water in a mixed methanol/water solvent system were observed in similar spectra. The α-carbon shifts varied more smoothly than the corresponding α-proton shifts and were found to correlate with the transition from the helix to the random coil conformer in parallel with changes in the circular dichroism spectrum. Chemical shifts of this peptide are interpreted with regard to the current database of assignments in proteins of known 3D structure (Wishart et al. (1991) J. Mol. Biol., 222, 311–333). The N-terminal region of the peptide shows increased flexibility at lower methanol concentrations, as evidenced by the merger of the α-proton resonances of G1 (at 40% and 15% methanol) and G3 (at 15% methanol). Conformational exchange rates for G1 and G3 were estimated by comparison of the experimental spectra with simulated spectra and found to be as large as 4000 s−1 for G1 in 40% and 15% methanol and 600 s−1 for G3 in 15% methanol. Overall, these 1H and 13C chemical shift data support the description of monomeric melittin in methanol currently evolving in the literature and suggest a structure composed of a linked pair of helices with different structural stabilities, each of which experiences dynamical fraying at its free terminus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bazzo R., Tappin M.J., Pastore A., Harvey T.S., Carver J.A. and Campbell I.D. (1988) Eur. J. Biochem., 173, 139–146.

    Google Scholar 

  • Bello J., Bello H.R. and Granados E. (1982) Biochemistry, 21, 461–465.

    Google Scholar 

  • Bax A., Griffey R.H. and Hawkins B.L. (1983) J. Magn. Reson., 55, 301–315.

    Google Scholar 

  • Braunschweiler L. and Ernst R.R. (1983) J. Magn. Reson., 53, 521–528.

    Google Scholar 

  • Brown L.R., Lauterwein J. and Wüthrich K. (1980) Biochem. Biophys. Acta., 62, 231–244.

    Google Scholar 

  • Buckley P.J., Kemple M.D. and Prendergast F.G. (1993) J. Cell. Biochem., 17C, 291.

    Google Scholar 

  • Dempsey C.E. (1988) Biochemistry, 27, 6893–6901.

    Google Scholar 

  • Kaplan J.I. and Fraenkel G. (1980) NMR of Chemically Exchanging Systems, Academic Press, New York.

    Google Scholar 

  • Gans P.J., Lyu P.C., Manning M.C., Woody R.W. and Kallenbach N.R. (1991) Biopolymers, 31, 1605–1614.

    Google Scholar 

  • Greenfield N. and Fasman G.D. (1969) Biochemistry, 8, 4108–4116.

    Google Scholar 

  • Habermann E. (1972) Science, 177, 314–322.

    Google Scholar 

  • Ikura T., Gō N. and Inagaki F. (1991) Proteins: Struct. Func. Genet., 9, 81–89.

    Google Scholar 

  • JohnsonJr. W.C. (1990) Proteins: Struct. Func. Genet., 7, 205–214.

    Google Scholar 

  • Lakowicz J.R., Gryczynski I., Wiczk W., Laczko G., Prendergast F.G. and Johnson M. (1990) Biophys. Chem., 36, 99–115.

    Google Scholar 

  • Lauterwein J., Brown L.R. and Wüthrich K. (1980) Biochem. Biophys. Acta., 622, 219–230.

    Google Scholar 

  • Liff M.I., Lyu P.C. and Kallenbach N.R. (1991) J. Am. Chem. Soc., 113, 1014–1019.

    Google Scholar 

  • Merutka G., Shalongo W. and Stellwagen E. (1991) Biochemistry, 30, 4245–4248.

    Google Scholar 

  • Müller L. (1979) J. Am. Chem. Soc., 101, 4481–4484.

    Google Scholar 

  • Pastore A., Harvey T.S., Dempsey C.E. and Campbell I.D. (1989) Eur. Biophys. J., 16, 363–367.

    Google Scholar 

  • Pastore A. and Saudek V. (1990) J. Magn. Reson., 90, 165–176.

    Google Scholar 

  • Quay S.C. and Condie C.C. (1983) Biochemistry, 22, 695–700.

    Google Scholar 

  • Reily M.D., Venkataraman T. and Omecinsky D.O. (1992) J. Am. Chem. Soc., 114, 6251–6252.

    Google Scholar 

  • Schwarz G. J. Mol. Biol. (1965), 11, 64–77.

    Google Scholar 

  • Spera S. and Bax A. J. Am. Chem. Soc. (1991), 113, 5490–5492.

    Google Scholar 

  • Terwillinger T.C. and Eisenberg D. (1982a) J. Biol. Chem., 257, 6010–6015.

    Google Scholar 

  • Terwillinger T.C. and Eisenberg D. (1982b) J. Biol. Chem., 257, 6016–6022.

    Google Scholar 

  • Wesson L. and Eisenberg D. (1992) Protein Sci., 1, 227–235.

    Google Scholar 

  • Weaver A.J., Kemple M.D., Brauner J.W., Mendelson R. and Prendergast F.G. (1992) Biochemistry, 28, 1301–1313.

    Google Scholar 

  • Weaver A.J., Kemple M.D. and Prendergast F.G. (1989) Biochemistry, 28, 8614–8623.

    Google Scholar 

  • Wilcox W. and Eisenberg D. (1992) Protein Sci., 1, 641–653.

    Google Scholar 

  • Wishart D.S., Sykes B.D. and Richards F.M. (1991) J. Mol. Biol., 222, 311–333.

    Google Scholar 

  • Yunes R.A. (1982) Arch. Biochem. Biophys., 216, 559–565.

    Google Scholar 

  • Zhou N.E., Zhu B., Sykes B.D. and Hodges R.S. (1992) J. Am. Chem. Soc., 114, 4320–4326.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckley, P., Edison, A.S., Kemple, M.D. et al. 13Cα-NMR assignments of melittin in methanol and chemical shift correlations with secondary structure. J Biomol NMR 3, 639–652 (1993). https://doi.org/10.1007/BF00198369

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198369

Keywords

Navigation