Skip to main content
Log in

1H NMR studies of the mercuric ion binding protein MerP: Sequential assignment, secondary structure and global fold of oxidized MerP

  • Research Papers
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

The oxidized form of the mercuric ion binding protein MerP has been studied by two-dimensional NMR. MerP, which is a periplasmic water-soluble protein with 72 amino acids, is involved in the detoxification of mercuric ions in bacteria with resistance against mercury. The mercuric ions in the periplasmic space are first scavenged by the MerP protein, then transported into the cytoplasm by the membrane-bound transport protein MerT, and finally reduced to elementary (nontoxic) mercury by the enzyme mercuric reductase. In this work, the 1H NMR spectrum of oxidized MerP (closed disulfide bridge) has been assigned by using homonuclear 2D NMR techniques. The secondary structure and global fold have been inferred from the nuclear Overhauser effect (NOE) data. The secondary structure comprises four β-strands and two α-helices, in the order β1α1β2β3α2β4. The protein folds into an antiparallel β-sheet, β2β3β1β4, with the two antiparallel helices on one side of the sheet. The folding topology is similar to that of acylphosphatase, the activation domain of porcine pancreatic procarboxypeptidase B, the DNA-binding domain of bovine papillomavirus-1 E2 and the RNA-binding domains of the U1 snRNP A and hnRNP C proteins. However, there is no structural similarity between MerP and other bacterial periplasmic binding proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames G.F.-L., Mimura C.S. and Shyamala V. (1990) FEMS Microbiol. Rev. 75, 429–446.

    Google Scholar 

  • Aue W.P., Bartholdi E. and Ernst R.R. (1976) J. Chem. Phys., 64, 2229–2246.

    Google Scholar 

  • Barrineau P., Gilbert P., Jackson W.J., Jones C.S., Summers A.O. and Wisdom S. (1984) J. Mol. Appl. Genet., 2, 601–619.

    Google Scholar 

  • Bax A. and Davis D.G. (1985) J. Magn. Reson., 65, 355–360.

    Google Scholar 

  • Bax A. and Drobny G. (1985) J. Magn. Reson., 61, 306–320.

    Google Scholar 

  • Bodenhausen G., Vold R.L. and Vold R.R. (1980) J. Magn. Reson., 37, 93–106.

    Google Scholar 

  • Braunschweiler L., Bodenhausen G. and Ernst R.R. (1983) Molec. Phys., 48, 535–560.

    Google Scholar 

  • Braunschweiler L. and Ernst R.R. (1983) J. Magn. Reson., 53, 521–528.

    Google Scholar 

  • Brown N.L. (1985) Trends Biochem. Sci., 10, 400–403.

    Google Scholar 

  • Brown S.C., Weber P.L. and Mueller L. (1988) J. Magn. Reson., 77, 166–169.

    Google Scholar 

  • Callaghan P.T., MacKay A.L., Pauls K.P., Söderman O. and Bloom M. (1984) J. Magn. Reson., 56, 101–109.

    Google Scholar 

  • Chazin W.J. and Wright P.E. (1987) Biopolymers, 26, 973–977.

    Google Scholar 

  • Coll M., Guasch A., Avilés F.X. and Huber R. (1991) EMBO J., 191, 1–9.

    Google Scholar 

  • Creighton T.E. (1983) Proteins, Structures and Molecular Properties, W.H. Freeman and Company, New York, p. 230.

    Google Scholar 

  • Drobny G., Pines A., Sinton S., Weitekamp D. and Wemmer D. (1979) Faraday Div. Chem. Soc. Symp., 13, 49–55.

    Google Scholar 

  • Eich G., Bodenhausen G. and Ernst R.R. (1982) J. Am. Chem. Soc., 104, 3732–3733.

    Google Scholar 

  • Eisenberg D., Wesson M. and Wilcox W. (1989) In Prediction of Protein Structure and the Principles of Protein Conformation (Ed., Fasman G.D.) Plenum Press, New York, pp. 635–646.

    Google Scholar 

  • Griesinger C., Otting G., Wüthrich K. and Ernst R.R. (1988) J. Am. Chem. Soc., 110, 7870–7872.

    Google Scholar 

  • Gross K.H. and Kalbitzer H.R. (1988) J. Magn. Reson., 76, 87–99.

    Google Scholar 

  • Hamlett N.V., Landale E.C., Davis B.H. and Summers A.O. (1992) J. Bacteriol., 174, 6377–6385.

    Google Scholar 

  • Hegde R.S., Grossman S.R., Laimins L.A. and Sigler P.B. (1992) Nature, 359, 505–512.

    Google Scholar 

  • Jeener J., Meier B.H., Backmann P. and Ernst R.R. (1979) J. Chem. Phys., 71, 4546–4553.

    Google Scholar 

  • Kumar A., Ernst R.R. and Wüthrich K. (1980) Biochem. Biophys. Res. Commun., 95, 1–6.

    Google Scholar 

  • Leijonmarck M. and Liljas A. (1987) J. Mol. Biol., 195, 555–580.

    Google Scholar 

  • Manoleras N. and Norton R. (1972) J. Biomol. NMR, 2, 485–494.

    Google Scholar 

  • Marion D. and Bax A. (1988) J. Magn. Reson., 79, 352–356.

    Google Scholar 

  • Marion D. and Bax A. (1989) J. Magn. Reson., 83, 205–211.

    Google Scholar 

  • Marion D., Ikura M. and Bax A. (1989) J. Magn. Reson., 84, 425–430.

    Google Scholar 

  • Marion D. and Wüthrich K. (1983) Biochem. Biophys. Res. Comm., 113, 967–974.

    Google Scholar 

  • Misra T.K., Brown N.L., Fritzinger D.C., Pridmore R.D., Barnes W.M., Haberstroh L. and Silver S. (1984) Proc. Natl. Acad. Sci. USA, 81, 5975–5979.

    Google Scholar 

  • Nagai K., Oubridge C., Jessen T.H., Li J. and Evans P.R. (1990) Nature, 348, 515–520.

    Google Scholar 

  • Pastore A., Saudek V., Ramponni G. and Williams R.J.P. (1992) J. Mol. Biol., 224, 427–440.

    Google Scholar 

  • Pelczer I. (1991) J. Am. Chem. Soc., 113, 3211–3212.

    Google Scholar 

  • Quiocho F.A. (1990) Phil. Trans. R. Soc. Lond. B., 326, 341–351.

    Google Scholar 

  • Quiocho F.A. and Vyas N.K. (1984) Nature, 310, 381–386.

    Google Scholar 

  • Rance M., Sørensen O.W., Bodenhausen G., Wagner G., Ernst R.R. and Wüthrich K. (1983) Biochem. Biophys. Res. Commun., 117, 479–485.

    Google Scholar 

  • Rance M., Sørensen O.W., Leupin W., Kogler H., Wüthrich K. and Ernst R.R. (1985) J. Magn. Reson., 61, 67–80.

    Google Scholar 

  • Richardson J. (1981) Adv. Protein Chem., 34, 167–339.

    Google Scholar 

  • Sahlman L. and Jonsson B.-H. (1992) Eur. J. Biochem., 205, 375–381.

    Google Scholar 

  • Summers A.O. (1986) Annu. Rev. Microbiol., 40, 607–634.

    Google Scholar 

  • Vendrell J., Billeter M., Wider G., Avilés F.X. and Wüthrich K. (1991) EMBO J., 10, 11–15.

    Google Scholar 

  • Wagner G. (1983) J. Wagn. Reson., 55, 151–156.

    Google Scholar 

  • Wishart D.S., Sykes B.D. and Richards F.M. (1992) Biochemistry, 31, 1647–1651.

    Google Scholar 

  • WilliamsJr. C.H. (1992) In Chemistry and Biochemistry of Flavoenzymes (Ed., Muller F.) Vol. 3, CRC Press, Boca Raton, FL, pp. 121–211.

    Google Scholar 

  • Wittekind M., Görlach M., Friedrichs M.S., Dreyfuss G. and Müller L. (1992a) Biochemistry, 31, 6254–6265.

    Google Scholar 

  • Wittekind M., Rajagopal P., Branchini B.R., Reizer J., Saier M.H. and Klevit R. (1992b) Protein Sci., 1, 1363–1376.

    Google Scholar 

  • Wittekind m., Reizer J. and Klevit R.E. (1990) Biochemistry, 29, 7191–7200.

    Google Scholar 

  • Wüthrich K. (1986) NMR of Proteins and Nucleic Acids, Wiley, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eriksson, PO., Sahlman, L. 1H NMR studies of the mercuric ion binding protein MerP: Sequential assignment, secondary structure and global fold of oxidized MerP. J Biomol NMR 3, 613–626 (1993). https://doi.org/10.1007/BF00198367

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198367

Keywords

Navigation