Phase labeling of C−H and C−C spin-system topologies: Application in PFG-HACANH and PFG-HACA(CO)NH triple-resonance experiments for determining backbone resonance assignments in proteins

Summary

Triple-resonance experiments can be designed to provide useful information on spin-system topologies. In this paper we demonstrate optimized proton and carbon versions of PFG-CT-HACANH and PFG-CT-HACA(CO)NH ‘straight-through’ triple-resonance experiments that allow rapid and almost complete assignments of backbone Hα, 13Cα, 15N and HN resonances in small proteins. This work provides a practical guide to using these experiments for determining resonance assignments in proteins, and for identifying both intraresidue and sequential connections involving glycine residues. Two types of delay tunings within these pulse sequences provide phase discrimination of backbone Gly Cα and Hα resonances: (i) C−H phase discrimination by tuning of the refocusing period τa_f; (ii) C−C phase discrimination by tuning of the 13C constant-time evolution period 2Tc. For small proteins, C−C phase tuning provides better S/N ratios in PFG-CT-HACANH experiments while C−H phase tuning provides better S/N ratios in PFG-CT-HACA(CO)NH. These same principles can also be applied to triple-resonance experiments utilizing 13C-13C COSY and TOCSY transfer from peripheral side-chain atoms with detection of backbone amide protons for classification of side-chain spin-system topologies. Such data are valuable in algorithms for automated analysis of resonance assignments in proteins.

This is a preview of subscription content, access via your institution.

References

  1. BaxA. and GrzesiekS. (1993) Acc. Chem. Res., 26, 131–138.

    Google Scholar 

  2. BoucherW., LaueE.D., Campbell-BurkS.L. and DomailleP.J. (1992) J. Biomol. NMR, 2, 631–637.

    Google Scholar 

  3. ClubbR.T., ThanabalV. and WagnerG. (1992) J. Magn. Reson., 97, 213–217.

    Google Scholar 

  4. FriedrichsM., MuellerL. and WittekindM. (1994) J. Biomol. NMR, 4, 703–726.

    Google Scholar 

  5. GehringK. and GuittetE. (1995) J. Magn. Reson., B109, 206–208.

    Google Scholar 

  6. GrzesiekS. and BaxA. (1992a) J. Am. Chem. Soc., 114, 6291–6293.

    Google Scholar 

  7. GrzesiekS. and BaxA. (1992b) J. Magn. Reson., 99, 201–207.

    Google Scholar 

  8. GrzesiekS. and BaxA. (1993) J. Biomol. NMR, 3, 185–204.

    Google Scholar 

  9. GrzesiekS. and BaxA. (1995) J. Am. Chem. Soc., 117, 6527–6531.

    Google Scholar 

  10. IkuraM., KayL.E. and BaxA. (1990) Biochemistry, 29, 4659–4667.

    Google Scholar 

  11. KayL.E., IkuraM. and BaxA. (1991) J. Magn. Reson., 91, 84–92.

    Google Scholar 

  12. KayL.E., WittekindM., McCoyM.A., FriedrichsM.S. and MuellerL. (1992a) J. Magn. Reson., 98, 443–450.

    Google Scholar 

  13. KayL.E., KeiferP. and SaarinenT. (1992b) J. Am. Chem. Soc., 114, 10663–10665.

    Google Scholar 

  14. LyonsB.A. and MontelioneG.T. (1993) J. Magn. Reson., 101, 206–209.

    Google Scholar 

  15. MarionD., IkuraM., TschudinR., and BaxA. (1989) J. Magn. Reson., 84, 393–399.

    Google Scholar 

  16. MeadowsR.P., OlejniczakE.T. and FesikS.W. (1994) J. Biomol. NMR, 4, 79–96.

    Google Scholar 

  17. MorrisG. (1980) J. Am. Chem. Soc., 102, 428–429.

    Google Scholar 

  18. MontelioneG.T. and WagnerG. (1989a) J. Am. Chem. Soc., 111, 3096–3098.

    Google Scholar 

  19. MontelioneG.T. and WagnerG. (1989b) J. Am. Chem. Soc., 111, 5474–5475.

    Google Scholar 

  20. MontelioneG.T. and WagnerG. (1990) J. Magn. Reson., 83, 183–188.

    Google Scholar 

  21. MontelioneG.T., LyonsB.A., EmersonS.D. and TashiroM. (1992) J. Am. Chem. Soc., 114, 10974–10975.

    Google Scholar 

  22. NagayamaK. (1986) J. Magn. Reson., 66, 240–249.

    Google Scholar 

  23. OlejniczakE.T., XuR.X., PetrosA.M. and FesikS.W. (1992) J. Magn. Reson., 100, 444–450.

    Google Scholar 

  24. OlejniczakE.T. and FesikS.W. (1994) J. Am. Chem. Soc., 116, 2215–2216.

    Google Scholar 

  25. PalmerA.G., FairbrotherW.J., CavanaghJ., WrightP.E. and RanceM. (1992) J. Biomol. NMR, 2, 103–108.

    Google Scholar 

  26. PowersR., GronenbornA.M., CloreG.M. and BaxA. (1991) J. Magn. Reson., 94, 209–213.

    Google Scholar 

  27. Rios, C.B., Feng, W., Tashiro, M., Shang, Z. and Montelione, G.T. (1996) submitted to J. Biomol. NMR.

  28. SantoroJ. and KingG.C. (1992) J. Magn. Reson., 97, 202.

    Google Scholar 

  29. ShakaA.J., BarkerP.B. and FreemanR. (1985) J. Magn. Reson., 64, 547–552.

    Google Scholar 

  30. TashiroM., RiosC.B. and MontelioneG.T. (1995) J. Biomol. NMR, 6, 211–216.

    Google Scholar 

  31. WittekindM. and MuellerL. (1993) J. Magn. Reson., B101, 201–205.

    Google Scholar 

  32. WittekindM., MetzlerW.J. and MuellerL. (1993) J. Magn. Reson., B101, 214–217.

    Google Scholar 

  33. YamazakiT., Forman-KayJ.D. and KayL.E. (1993) J. Am. Chem. Soc., 115, 11054–11055.

    Google Scholar 

  34. YamazakiT., PascalS.M., SingerA.U., Forman-KayJ.D. and KayL.E. (1995) J. Am. Chem. Soc., 117, 3556–3564.

    Google Scholar 

  35. ZimmermanD.E. and MontelioneG.T. (1995) Curr. Opin. Struct. Biol., 5, 664–673.

    Google Scholar 

  36. ZimmermanD., KulikowskiC., WangL., LyonsB. and MontelioneG.T. (1994) J. Biomol. NMR, 4, 241–256.

    Google Scholar 

  37. Zimmerman, D.E., Kulikowski, C.A., Feng, W., Tashiro, M., Chien, C.-Y., Rios, C.B., Moy, F.J., Powers, R. and Montelione, G.T. (1996) manuscript submitted for publication.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gaetano T. Montelione.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Feng, W., Rios, C.B. & Montelione, G.T. Phase labeling of C−H and C−C spin-system topologies: Application in PFG-HACANH and PFG-HACA(CO)NH triple-resonance experiments for determining backbone resonance assignments in proteins. J Biomol NMR 8, 98–104 (1996). https://doi.org/10.1007/BF00198144

Download citation

Keywords

  • Automated analysis of NMR data
  • Glycine
  • Phase information
  • Pulsed-field gradient
  • Spin-system topologies