Skip to main content
Log in

Temperature coefficients of amide proton NMR resonance frequencies in trifluoroethanol: A monitor of intramolecular hydrogen bonds in helical peptides?

  • Short Communication
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

2D 1H NMR spectroscopy of two α-helical peptides which differ in their amphipathicity has been used to investigate the relationships between amide-proton chemical shifts, amide-proton exchange rates, temperature, and trifluoroethanol (TFE) concentration. In 50% TFE, in which the peptides are maximally helical, the amide-proton chemical shift and temperature coefficient patterns are very similar to each other in each peptide. Temperature coefficients from −10 to −6 ppb/K, usually indicative of the lack of intramolecular hydrogen bonds, were observed even for hydrophobic amino acids in the center of the α-helices. However, slow hydrogen isotope exchange for residues from 4 to 16 in both 18-mer helices indicates intact intramolecular hydrogen bonds over most of the length of these peptides. Based on these anomalous observations, we suggest that the pattern of amide-proton shifts in α-helices in H2O/TFE solvents is dominated by bifurcated intermolecular hydrogen-bond formation between the backbone carbonyl groups and TFE. The amide-proton chemical shift changes with increasing temperature may be interpreted by a disruption of intermolecular hydrogen bonds between carbonyl groups and the TFE in TFE/water rather than by the length of intramolecular hydrogen bonds in α-helices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • AndersenN.H., ChenC.P., MarschnerT.M., KrystekJr.S.R. and BassolinoD.A. (1992) Biochemistry, 31, 1280–1295.

    Article  Google Scholar 

  • BlancoF.J., HerranzJ., GonzalezC., JimenezM.A., RicoM., SantoroJ. and NietoJ.L. (1992) J. Am. Chem. Soc., 114, 9676–9677.

    Article  Google Scholar 

  • BundiA. and WüthrichK. (1979a) Biopolymers, 18, 285–297.

    Article  Google Scholar 

  • BundiA. and WüthrichK. (1979b) Biopolymers, 18, 299–311.

    Article  Google Scholar 

  • DeDiosA.C., PearsonJ.G. and OldfieldE. (1993) Science, 260, 1491–1496.

    Article  ADS  Google Scholar 

  • DysonH.J., RanceM., HoughtenR.A., LernerR.A. and WrightP.E. (1988) J. Mol. Biol., 201, 161–200.

    Article  Google Scholar 

  • EisenbergD. (1984) Annu. Rev. Biochem., 53, 595–623.

    Article  Google Scholar 

  • GoodmanM., NaiderF. and TonioloC. (1971) Biopolymers, 10, 1719–1730.

    Article  Google Scholar 

  • JacksonM. and MantschH. (1992) Biochim. Biophys. Acta, 1118, 139–143.

    Google Scholar 

  • JimenezM.A., NietoJ.L., RicoM., SantoroJ., HerranzJ. and BermejoF.J. (1986) J. Mol. Biol., 143, 435–438.

    ADS  Google Scholar 

  • KesslerH. (1982) Angew. Chem., 94, 509–520.

    Article  Google Scholar 

  • KuntzI.D., KosenP.A. and CraigE.C. (1991) J. Am. Chem. Soc., 113, 1406–1408.

    Article  Google Scholar 

  • LlinásM. and KleinM.P. (1975) J. Am. Chem. Soc., 97, 4731–4737.

    Article  Google Scholar 

  • MerutkaG., DysonH.J. and WrightP.E. (1995) J. Biomol. NMR, 5, 14–24.

    Article  Google Scholar 

  • NelsonJ.W. and KallenbachN.R. (1989) Biochemistry, 28, 5256–5261.

    Article  Google Scholar 

  • ÖsapayK. and CaseD.A. (1991) J. Am. Chem. Soc., 113, 9436–9444.

    Article  Google Scholar 

  • PardiA., WagnerG. and WüthrichK. (1983) Eur. J. Biochem., 137, 445–454.

    Article  Google Scholar 

  • RothemundS., BeyermannM., KrauseE., KrauseG., BienertM., HodgesR.S., SykesB.D. and SönnichsenF.D. (1995) Biochemistry, 43, 12954–12962.

    Article  Google Scholar 

  • Rothemund, S., Krause, M., Beyermann, M., Bienert, M., Sykes, B.D. and Sönnichsen, F.D. (1996) Biopolymers, in press.

  • SönnichsenF.D., VanEykJ.E., HodgesR.S. and SykesB.D. (1992) Biochemistry, 31, 8790–8798.

    Article  Google Scholar 

  • UrryD.W. and LongM.M. (1976) CRC Crit. Rev. Biochem., 4, 1–45.

    Article  Google Scholar 

  • WagnerG., PardiA. and WüthrichK. (1983) J. Am. Chem. Soc., 105, 5948–5949.

    Article  Google Scholar 

  • WishartD.S., SykesB.D. and RichardsF.M. (1991) J. Mol. Biol., 222, 311–333.

    Article  Google Scholar 

  • WishartD.S., SykesB.D. and RichardsF.M. (1992) Biochemistry, 31, 1647–1651.

    Article  Google Scholar 

  • WishartD.S., BigamC.G., HolmA., HodgesR.S. and SykesB.D. (1995) J. Biomol. NMR, 5, 67–81.

    Article  Google Scholar 

  • ZhouN., ZhuB., SykesB.D. and HodgesR.S. (1992) J. Am. Chem. Soc., 114, 4320–4326.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supplementary Material is available upon request, comprising seven pages with listings of experimental details and the NMR shift data for the two peptides.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rothemund, S., Weißhoff, H., Beyermann, M. et al. Temperature coefficients of amide proton NMR resonance frequencies in trifluoroethanol: A monitor of intramolecular hydrogen bonds in helical peptides?. J Biomol NMR 8, 93–97 (1996). https://doi.org/10.1007/BF00198143

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198143

Keywords

Navigation