Skip to main content
Log in

Water molecule binding and lifetimes on the DNA duplex d(CGCGAATTCGCG)2

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

Measurements of the water proton spin-lattice relaxation rate for aqueous solutions of the palindromic dodecamer, d(CGCGAATTCGCG)2, are reported as a function of the magnetic field strength. The magnitude of the relaxation rates at low magnetic field strengths and the shape of the relaxation dispersion curve permit assessment of the number of water molecules which may be considered bound to the DNA for a time equal to or longer than the rotational correlation time of the duplex. The data are examined using limiting models that arbitrarily use the measured rotational correlation time of the polynucleotide complex as a reference point for the water molecule lifetime. If it is assumed that water molecules are bound at DNA sites for times as long as or longer than the rotational correlation time of the duplex, then the magnitude of the relaxation rates at low field require that there may be only two or three such water sites. However, if the lifetime constraints is relaxed, and we assume that the number of water molecules bound to the DNA is more nearly the number identified in the X-ray structures, then the average water molecule lifetime is on the order of 1 ns. Measurements of 1H NOESY spectra demonstrate that some water molecules must have lifetimes sufficiently long that negative Overhauser effects are observed. Taken together, these results suggest a distribution of water molecule lifetimes in which most of the DNA-bound water molecule lifetimes are shorter than the rotational correlation time of the duplex, but where some have lifetimes of at least 1 ns under these concentrated conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DNA:

deoxyribonucleic acid

NOE:

nuclear Overhauser enhancement

NOESY:

nuclear Overhauser enhancement spectroscopy

References

  • ColeK.S. and ColeR.H. (1941) J. Chem. Phys., 9, 341–351.

    Google Scholar 

  • DickersonR.E. and DrewH.R. (1981) J. Mol. Biol., 149, 761–786.

    Google Scholar 

  • DrewH.R., WingR.M., TakanoT., BrokaC., TanakaS., ItakuraK. and DickersonR.E. (1981) Proc. Natl. Acad. Sci. USA, 18, 2179–2183.

    Google Scholar 

  • DrewH.R., SamsonS. and DickersonR.E. (1982) Proc. Natl. Acad. Sci. USA, 79, 4040–4044.

    Google Scholar 

  • EdwardsK.J., BrownD.J., SpinkN., SkellyJ.V. and NeidleS. (1992) J. Mol. Biol. 226, 1161–1173.

    Google Scholar 

  • EdzesH.T. and SamulskiE.T. (1977) Nature, 265, 521–523.

    Google Scholar 

  • EdzesH.T. and SamulskiE.T. (1978) J. Magn. Reson., 31, 207–229.

    Google Scholar 

  • EimerW., WilliamsonJ.R., BoxerS.G. and PecoraR. (1990) Biochemistry, 29, 799–811.

    Google Scholar 

  • EisenstadtM. (1980) J. Magn. Reson., 38, 507–527.

    Google Scholar 

  • EisenstadtM. (1985) Biochemistry, 24, 3407–3421.

    Google Scholar 

  • FetlerB.K., SimplaceanuV., VanderVenN.S., LoweI.J. and HoC. (1993) J. Magn. Reson., B101, 17–27.

    Google Scholar 

  • FratiniA.V., KopkaM.L., DrewH.R. and DickersonR.E. (1982) J. Biol. Chem., 257, 14686–14707.

    Google Scholar 

  • FungB.M. and McGaughyT.W. (1980) J. Magn. Reson., 39, 413–420.

    Google Scholar 

  • GerothanassisJ.P. (1994) Prog. NMR Spectrosc., 26, 171–237.

    Google Scholar 

  • GoldammerE.V. and ZeidlerM.D. (1969) Ber. Buns. Phys. Chem., 73, 4–15.

    Google Scholar 

  • Haber-PohlmeierS. and EimerW. (1993) J. Phys. Chem., 97, 3095–3097.

    Google Scholar 

  • HareD.R., WemmerD.E., ChouS. and DrobnyG. (1983) J. Mol. Biol., 171, 319–336.

    Google Scholar 

  • HernandezG., TweedleM.F., BrittainH. and BryantR.G. (1990) Inorg. Chem., 29, 985–988.

    Google Scholar 

  • HerzH.G. (1967) Prog. NMR Spectrosc., 3, 159–230.

    Google Scholar 

  • KalkA. and BerendsenH.J.C. (1976) J. Magn. Reson., 24, 343–346.

    Google Scholar 

  • KimmichR. and DosterW. (1976) J. Polym. Sci. Polym. Phys., 14, 1671–1682.

    Google Scholar 

  • KimmichR. and WinterF. (1985) Prog. Colloid Polym. Sci., 71, 66–70.

    Google Scholar 

  • KimmichR., WinterF., NusserW. and SpohnK.H. (1986) J. Magn. Reson., 68, 263–282.

    Google Scholar 

  • KimmichR. (1990) Prog. Colloid Polym., 83, 211–215.

    Google Scholar 

  • KimmichR., GneitingT., KotitschkeK. and SchnurG. (1990) Biophys. J., 58, 1183–1197.

    Google Scholar 

  • KoenigS.H. and SchillingerW.E. (1969) J. Biol. Chem., 12, 3283–3289.

    Google Scholar 

  • KoenigS.H. and HallengaK. (1976) Biochemistry, 15, 4255–4263.

    Google Scholar 

  • KoenigS.H., BryantR.G., HallengaK. and JacobsG.S. (1978) Biochemistry, 17, 4348–4358.

    Google Scholar 

  • KopkaM.L., FratiniA.V., DrewH.R. and DickersonR.E. (1983) J. Mol. Biol., 163, 129–146.

    Google Scholar 

  • KotitschkeK., KimmichR., RommelE. and ParakF. (1990) Prog. Colloid Polym. Sci. 83, 211–215.

    Google Scholar 

  • KrynickiK. (1966) Physica, 32, 167–180.

    Google Scholar 

  • KubinecM.G. and WemmerD. (1992) J. Am. Chem. Soc., 114, 8739–8740.

    Google Scholar 

  • LiepinshE., OttingG. and WüthrichK. (1992) Nucleic Acids Res., 20, 6549–6553.

    Google Scholar 

  • MarshallA.G. (1970) J. Chem. Phys., 52, 2527–2534.

    Google Scholar 

  • MarshallA.G., SchmidtP.G. and SykesB.D. (1972) Biochemistry, 11, 3875–3879.

    Google Scholar 

  • NuuteroS., FujimotoB.S., FlynnP.F., ReidB.R., RibeiroN.S. and SchurrJ.M. (1994) Biopolymers, 34, 463–480.

    Google Scholar 

  • OttJ. and EcksteinF. (1985) Biochemistry, 24, 2530–2535.

    Google Scholar 

  • OttingG. and WüthrichK. (1989) J. Am. Chem. Soc., 111, 974–980.

    Google Scholar 

  • OttingG., LiepinshE. and WüthrichK. (1991a) Science, 254, 974–980.

    Google Scholar 

  • OttingG., LiepinshE. and WüthrichK. (1991b) J. Am. Chem. Soc., 113, 4363–4369.

    Google Scholar 

  • OttingG., LiepinshE., FarmerIIB.T. and WüthrichK. (1991c) J. Biol. Nucl. Magn. Reson., 1, 209–215.

    Google Scholar 

  • PardiA., MordenK.M., PatelD.J. and TinocoJr.I. (1982) Biochemistry, 24, 6568–6574.

    Google Scholar 

  • PatelD.J. (1982) Proc. Natl. Acad. Sci. USA, 79, 6424–6428.

    Google Scholar 

  • PatelD.J., KozlowskiS.A., MarkyL.A., BrokaC., RiceJ.A., ItakuraK. and BreslauerK.J. (1982) Biochemistry, 21, 428–436.

    Google Scholar 

  • PatelD.J., KozlowskiS.A. and BhattR. (1983) Proc. Natl. Acad. Sci. USA, 80, 3908–3912.

    Google Scholar 

  • PolnaszekC.F. and BryantR.G. (1984a) J. Am. Chem. Soc., 106, 428–429.

    Google Scholar 

  • PolnaszekC.F. and BryantR.G. (1984b) J. Chem. Phys., 81, 4038–4045.

    Google Scholar 

  • PolnaszekC.F., HanggiD., CarrP.W. and BryantR.G. (1987) Anal. Chim. Acta, 194, 311–316.

    Google Scholar 

  • QuintanaJ.R., LipanovA.A. and DickersonR.E. (1991) Biochemistry, 30, 10394–10396.

    Google Scholar 

  • RajagopalP., GilbertD.E., Van derMarelG.A., VanBoomK.H. and FeigonJ. (1988) J. Magn. Reson., 78, 526–537.

    Google Scholar 

  • RedfieldA.G., FiteW. and BleichH.E. (1968) Rev. Sci. Instrum., 39, 710–715.

    Google Scholar 

  • SchauerG., KimmichR. and NusserW. (1988) Biophys. J., 53, 397–404.

    Google Scholar 

  • ShirleyW.M. and BryantR.G. (1982) J. Am. Chem. Soc., 104, 2910–2918.

    Google Scholar 

  • SklenářB., BrooksB.R., ZonG. and BaxA. (1987) FEBS Lett., 216, 249–252.

    Google Scholar 

  • SmallcombeS. (1993) J. Am. Chem. Soc., 115, 4776–4785.

    Google Scholar 

  • SolomonI. (1956) Phys. Rev., 99, 559–565.

    Google Scholar 

  • StatesD.J., HaberkornR.A. and RubenD.J. (1982) J. Magn. Reson., 48, 286–292.

    Google Scholar 

  • ThomasG.A., KubasekW.L. and PeticolasW.L. (1989) Biochemistry, 28, 2001–2009.

    Google Scholar 

  • TurnerD.L. (1985) Prog. NMR Spectrosc., 17, 281–358.

    Google Scholar 

  • Whaley, M., Polnaszek, C.F., Cafiso, D.S. and Bryant, R.G., in preparation.

  • WingR., DrewH., TakanoT., BrokaC., TankaS., ItakuraK. and DickersonR.E. (1985) Nature, 287, 755–758.

    Google Scholar 

  • ZhouD. and BryantR.G. (1994) Magn. Reson. Med., 32, 725–732.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, D., Bryant, R.G. Water molecule binding and lifetimes on the DNA duplex d(CGCGAATTCGCG)2 . J Biomol NMR 8, 77–86 (1996). https://doi.org/10.1007/BF00198141

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198141

Keywords

Navigation