Skip to main content
Log in

Practical applications of time-averaged restrained molecular dynamics to ligand-receptor systems: FK506 bound to the Q50R,A95H,K98I triple mutant of FKBP-13

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Summary

The ability of time-averaged restrained molecular dynamics (TARMD) to escape local low-energy conformations and explore conformational space is compared with conventional simulated-annealing methods. Practical suggestions are offered for performing TARMD calculations with ligand-receptor systems, and are illustrated for the complex of the immunosuppressant FK506 bound to Q50R,A95H,K98I triple mutant FKBP-13. The structure of 13C-labeled FK506 bound to triple-mutant FKBP-13 was determined using a set of 87 NOE distance restraints derived from HSQC-NOESY experiments. TARMD was found to be superior to conventional simulated-annealing methods, and produced structures that were conformationally similar to FK506 bound to wild-type FKBP-12. The individual and combined effects of varying the NOE restraint force constant, using an explicit model for the protein binding pocket, and starting the calculations from different ligand conformations were explored in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DG:

distance geometry

dmFKBP-12:

double-mutant (R42K,H87V) FKBP-12

FKBP-12:

FK506-binding protein (12 kDa)

FKBP-13:

FK506-binding protein (13 kDa)

HSQC:

heteronuclear single-quantum coherence

KNOE :

force constant (penalty) for NOE-derived distance restraints

MD:

molecular dynamics

NOE:

nuclear Overhauser effect

SA:

simulated annealing

TARMD:

molecular dynamics with time-averaged restraints

tmFKBP-13:

triple-mutant (Q50R,A95H,K98I) FKBP-13

wtFKBP-12:

wild-type FKBP-12

References

  • ChengJ.-W., LepreC.A., ChambersS., FulghumJ.R., ThomsonJ.A. and MooreJ.M. (1993) Biochemistry, 32, 9000–9010.

    Google Scholar 

  • ChengJ.-W., LepreC.A. and MooreJ.M. (1994) Biochemistry, 33, 4093–4100.

    Google Scholar 

  • ClardyJ. (1994) Perspect. Drug Discov. Design, 2, 124–144.

    Google Scholar 

  • ClipstoneN.A. and CrabtreeG.R. (1992) Nature, 357, 695–697.

    Google Scholar 

  • Eccles, C., Billeter, M., Güntert, P. and Wüthrich, K. (1989) Abstracts for the Xth Meeting of the International Society for Magnetic Resonance, Morzine, France, July 16–21, p. S50.

  • FuterO., DeCenzoM.T., ParkS., JarrettB., AldapeR. and LivingstonD.J. (1995) J. Biol. Chem., 270, 18935–18940.

    Google Scholar 

  • GriffithJ.P., KimJ.L., KimE.E., SintchakM.D., ThomsonJ.A., FitzgibbonM.J., FlemingM.A., CaronP.A., HsiaoK. and NaviaM.A. (1995) Cell, 82, 507–522.

    Google Scholar 

  • Griffith, J.P. (1996) personal communication.

  • ItohS., DeCenzoM.T., LivingstonD.J., PearlmanD.A. and NaviaM. (1995) Bioorg. Med. Chem. Lett., 5, 1983–1988.

    Google Scholar 

  • JinY.-J., AlbersM.W., LaneW.S., BiererB.E., SchreiberS.L. and BurakoffS.J. (1991) Proc. Natl. Acad. Sci. USA, 88, 6677–6681.

    Google Scholar 

  • LiuJ., AlbersM.W., WandlessT.J., LuanS., AlbergD.G., BelshawP.J., CohenP., MeadowsR.P., NettesheimD.G., XuR.X., OlejniczakE.T., PetrosA.M., HolzmanT.F., MichnickS.W., RosenM.K., WandlessT.J., KarplusM. and SchreiberS.L. (1991) Science, 252, 836.

    Google Scholar 

  • LepreC.A., ThomsonJ.A. and MooreJ.M. (1992) Febs Lett., 1, 89–96.

    Google Scholar 

  • LepreC.A., ChengJ-W and MooreJ.M. (1993) J. Am. Chem. Soc., 115, 4929–4930.

    Google Scholar 

  • LepreC.A., PearlmanD.A., ChengJ.-W., DeCenzoM.T., LivingstonD.J. and MooreJ.M. (1994) Biochemistry, 33, 13571–13580.

    Google Scholar 

  • LiuJ., FarmerJ.D.J., LaneW.S., FriedmanJ., WeissmanI. and SchreiberS.L. (1991) Cell, 66, 807–815.

    Google Scholar 

  • MichnickS.W., RosenM.K., WandlessT.J., KarplusP.A. and SchreiberS.L. (1991) Science, 251, 836–839.

    Google Scholar 

  • MooreJ.M., PeattieD.A., FitzgibbonM.J. and ThomsonJ.A. (1991) Nature, 351, 248–250.

    Google Scholar 

  • PearlmanD.A., CaseD.A., CaldwellJ.C., RossW.S., CheathamT.C., DeBoltS.E., FergusonD.M., SeibelG.L. and KollmanP.A. (1995) Comput. Phys. Commun., 91, 1–41.

    Google Scholar 

  • PearlmanD.A. (1994) J. Biomol. NMR, 4, 1–16.

    Google Scholar 

  • O'KeefeS.J., TamuraJ., KincaidR.L., TocciM.J., O'NeillE.A. (1992) Nature, 357, 692–694.

    Google Scholar 

  • PranataJ. and JorgensenW.L. (1991) J. Am. Chem. Soc., 113, 9483–9493.

    Google Scholar 

  • RosenM.K., YangD., MartinP.K. and SchreiberS.L. (1993) J. Am. Chem. Soc., 115, 821–822.

    Google Scholar 

  • RyckaertJ.P., CiccottiG. and BerendsenH.J.C. (1997) J. Comput. Phys., 23, 327–341.

    Google Scholar 

  • ScheekR.M., VanNulandV.A.J., DeGrootB.L. and AmadeiA. (1995) J. Biomol. NMR, 5, 106–111.

    Google Scholar 

  • SchreiberS.L., LiuJ., AlbersM.W., RosenM.K., StandaertR.F., WandlessT.J., SomersP.K. (1992) Tetrahedron, 48, 2545–2558.

    Google Scholar 

  • SchultzL.W., MartinP.K., LiangJ., SchrieberS.L. and ClardyJ. (1994) J. Am. Chem. Soc., 116, 3129–3130.

    Google Scholar 

  • SigalN.H. and DumontF.J. (1992) Annu. Rev. Immunol., 10, 519–560.

    Google Scholar 

  • TordaA.E., ScheekR.M. and VanGunsterenW.F. (1989) Chem. Phys. Lett., 157, 289–294.

    Google Scholar 

  • TordaA.E., ScheekR.M. and VanGunsterenW.F. (1990) J. Mol. Biol., 214, 223–235.

    Google Scholar 

  • VanDuyneG.D., StandaertR.F., KarplusP.A., SchreiberS.L. and ClardyJ. (1991) Science, 252, 839.

    Google Scholar 

  • YangD., RosenM.K. and SchreiberS.L. (1993) J. Am. Chem. Soc., 115, 819–820.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lepre, C.A., Pearlman, D.A., Futer, O. et al. Practical applications of time-averaged restrained molecular dynamics to ligand-receptor systems: FK506 bound to the Q50R,A95H,K98I triple mutant of FKBP-13. J Biomol NMR 8, 67–76 (1996). https://doi.org/10.1007/BF00198140

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198140

Keywords

Navigation