Skip to main content
Log in

Solution structure of a LewisX analogue by off-resonance 1H NMR spectroscopy without use of an internal distance reference

  • Research Paper
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary

A recent 1H NMR method has been applied to the determination of the solution structure and internal dynamics of a synthetic mixed C/O trisaccharide related to sialyl Lewisx. Varying the rf field offset in ROESY-type experiments enabled the measurement of longitudinal and transverse dipolar cross-relaxation rates with high accuracy. Assuming that for each proton pair the motion could be represented by a single exponential autocorrelation function, it was possible to derive geometrical parameters (r) and dynamic parameters τcp. With this assumption, 224 cross-relaxation rates have been transformed into 30 interproton distance constraints and 30 dipolar correlation times. The distance constraints have been used in a simulated-annealing procedure. This trisaccharide exhibits a structure close to the O-glycosidic analogue, but its flexibility seems highly reduced. On the basis of the determined structure and dynamics, it is shown that no conformational exchange occurs, the molecule existing in the form of a unique family in aqueous solution. In order to assess the quality of the resulting structures and to validate this new experimental procedure of distance extraction, we finally compare these solution structures to the ones obtained using three different sets of distances deduced from three choices of internal reference. It appears that this procedure allows the determination of the most precise and accurate solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

COSY:

correlation spectroscopy

NOE:

nuclear Overhauser enhancement

NOESY:

nuclear Overhauser enhancement spectroscopy; rmsd, root-mean-square deviation

ROESY:

rotating frame Overhauser enhancement spectroscopy

SLex :

sialyl Lewisx

TOCSY:

total correlation spectroscopy

References

  • AbragamA. (1961) Principles of Nuclear Magnetism, Clarendon Press, Oxford, U.K.

    Google Scholar 

  • AbseherR., LüdemannS., SchreiberH. and SteinhauserO. (1995) J. Mol. Biol., 249, 604–624.

    Google Scholar 

  • BallG.E., O'NeillR.A., SchultzJ.E., LoweJ.B., WestonB.W., NagyJ.O., BrownE.G., HobbsC.J. and BednarskiM.D. (1992) J. Am. Chem. Soc., 114, 5449–5454.

    Google Scholar 

  • BaxA. and DavisD.G. (1985a) J. Magn. Reson., 63, 207–213.

    Google Scholar 

  • BaxA. and DavisD.G. (1985b) J. Magn. Reson., 65, 355–360.

    Google Scholar 

  • Bothner-ByA.A., StephensR.L., LeeJ., WarrenC.D. and JeanlozR.W. (1984) J. Am. Chem. Soc., 106, 811–813.

    Google Scholar 

  • BrooksB.R., BruccoleriR.E., OlafsonB.D., StatesD.J., SwaminathanS. and KarplusM. (1993) J. Comput. Chem., 4, 187–217.

    Google Scholar 

  • BrüngerA.T. (1992) X-PLOR v. 3.1, a System for X-Ray Crystallography and NMR, Yale University Press, New Haven, CT and London, U.K.

    Google Scholar 

  • BrüngerA.T., CloreG.M., GronenbornA.M., SaffrichR. and NilgesM. (1993) Science, 261, 328–331.

    Google Scholar 

  • BrüschweilerR., BlackledgeM. and ErnstR.R. (1991) J. Biomol. NMR, 1, 3–12.

    Google Scholar 

  • BrüschweilerR., RouxB., BlackledgeM., GriesingerC., KarplusM. and ErnstR.R. (1992) J. Am. Chem. Soc., 114, 2289–2302.

    Google Scholar 

  • CiceroD.O., BarbatoG. and BazzoR. (1995) J. Am. Chem. Soc., 117, 1027–1033.

    Google Scholar 

  • CloreG.M., RobienM.A. and GronenbornA.M. (1993) J. Mol. Biol., 231, 82–102.

    Google Scholar 

  • DeFreesS.A., GaetaF.C.A., LinY.-C., IchikawaY. and WongC.-Y. (1993) J. Am. Chem. Soc., 115, 7549–7550.

    Google Scholar 

  • DesvauxH., BerthaultP., BirlirakisN. and GoldmanM. (1994) J. Magn. Reson., A108, 219–229.

    Google Scholar 

  • DesvauxH., BerthaultP., BirlirakisN., GoldmanM. and PiottoM. (1995a) J. Magn. Reson., A113, 47–52.

    Google Scholar 

  • DesvauxH., BerthaultP. and BirlirakisN. (1995b) Chem. Phys. Lett., 233, 545–549.

    Google Scholar 

  • DesvauxH., BirlirakisN., WaryC. and BerthaultP. (1995c) Mol. Phys., 86, 1059–1073.

    Google Scholar 

  • DesvauxH. and GoldmanM. (1996) J. Magn. Reson., B110, 198–201.

    Google Scholar 

  • EjchartA., DabrowskiJ. and Von derLiethC.-W. (1992) Magn. Reson. Chem., 30, 105-S114.

    Google Scholar 

  • EjchartA. and DabrowskiJ. (1992) Magn. Reson. Chem., 30, 115–124.

    Google Scholar 

  • EmsleyL. and BodenhausenG. (1989) J. Magn. Reson., 82, 211–221.

    Google Scholar 

  • ErnstR.R., BodenhausenG. and WokaunA. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford, U.K.

    Google Scholar 

  • FeiziT. (1993) Curr. Opin. Struct. Biol., 3, 701–710.

    Google Scholar 

  • FrenchA.D. and BradyJ.W. (1990) Computer Modeling of Carbohydrate Molecules, ACS Symposium Series 430, American Chemical Society, Washington, DC.

    Google Scholar 

  • GiannisA. (1994) Angew. Chem. Int. Ed. Engl., 33, 178–180.

    Article  CAS  PubMed  Google Scholar 

  • GoldmanM. (1988) Quantum Description of High-Resolution NMR in Liquids, Clarendon Press, Oxford, U.K.

    Google Scholar 

  • HaS.N., GiammonaA., FieldM. and BradyJ.W. (1988) Carbohydr. Res., 180, 207–221.

    Google Scholar 

  • HaasnootC.A.G., DeLeeuwF.A.A.M. and AltonaC. (1980) Tetrahedron, 36, 2783–2792.

    Google Scholar 

  • HajdukP.J., HoritaD.A. and LernerL.E. (1993) J. Am. Chem. Soc., 115, 9196–9201.

    Google Scholar 

  • HanedaT., GoekjianP.G., KimS.H. and KishiY. (1992) J. Org. Chem., 57, 490–498.

    Google Scholar 

  • HasegawaA., AndoT., KatoM., IshidaH. and KisoM. (1994) Carbohydr. Res., 257, 67–80.

    Google Scholar 

  • JeenerJ., MeierB.H., BachmannP. and ErnstR.R. (1979) J. Chem. Phys., 71, 4546–4553.

    Google Scholar 

  • KrishnanV.V., ShekarS.C. and KumarA. (1991) J. Am. Chem. Soc., 113, 7542–7550.

    Google Scholar 

  • LaskyL.A. (1992) Science, 258, 964–969.

    Google Scholar 

  • LemieuxR.U., BockK., DelbaereL.T.J., KotoS. and RaoV.S. (1980) Can. J. Chem., 58, 631–653.

    Google Scholar 

  • LiS., SwindleS., SmithS., NiemanR., MooreA., MooreT. and DevensG. (1995) J. Phys. Chem., 99, 3371–3378.

    Google Scholar 

  • LinY.-C., HummelW., HuangD.-H., IchikawaY., NicolaouK.C. and WongC.-Y. (1992) J. Am. Chem. Soc., 114, 5452–5454.

    Google Scholar 

  • MalletA., MalletJ.-M. and SinaÿP. (1994) Tetrahedron Asymmetry, 5, 2593–2599.

    Google Scholar 

  • MierkeD.F., KurzM. and KesslerH. (1994) J. Am. Chem. Soc., 116, 1042–1049.

    Google Scholar 

  • MillerK.E., MukhopadhyayC., CagasP. and BushC.A. (1992) Biochemistry, 31, 6703–6709.

    Google Scholar 

  • MukhopadhyayC., MillerK.E. and BushC.A. (1994) Biopolymers, 34, 21–29.

    Google Scholar 

  • NilgesM., CloreG.M. and GronenbornA.M. (1988) FEBS Lett., 239, 129–136.

    Google Scholar 

  • ParekhR.R. and EdgeC.J. (1994) Trends Biotechnol., 12, 339–345.

    Google Scholar 

  • PengJ.W. and WagnerG. (1992) J. Magn. Reson., 98, 308–332.

    Google Scholar 

  • PhilippopoulosM. and CarmayL. (1994) J. Phys. Chem., 98, 8264–8273.

    Google Scholar 

  • PostC.B. (1992) J. Mol. Biol., 224, 1087–1101.

    Google Scholar 

  • PressW.H., FlanneryB.P., TeukolskyS.A. and VetterlingW.T. (1988) Numerical Recipes in C. The art of scientific programming, Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Rouzaud, D. and Sinaÿ, P. (1983) J. Chem. Soc. Ser. Chem. Commun., 1353–1354.

  • Rubinstenn, G., Bodenmüller, A., Mallet, J.-M. and Sinaÿ, P. (1996) manuscript in preparation.

  • SchleucherJ., QuantJ., GlaserS.J. and GriesingerC. (1995) J. Magn. Reson., A112, 144–151.

    Google Scholar 

  • ShakaA.J. and FreemanR. (1983) J. Magn. Reson., 51, 169–173.

    Google Scholar 

  • SharonN. and LisH. (1993) Scientific American, 268, 74–81.

    Google Scholar 

  • Singh, K., Fernández-Mayoralas, A. and Martin Lomas, M. (1994) J. Chem. Soc. Ser. Chem. Commun., 775–776.

  • SolomonI. (1955) Phys. Rev., 99, 559–565.

    Google Scholar 

  • ThorgersenH., LemieuxR.U., BockK. and MeyerB. (1982) Can. J. Chem., 60, 44–57.

    Google Scholar 

  • TordaA.E., ScheekR.M. and VanGunsterenW.F. (1990) J. Mol. Biol., 214, 223–235.

    Google Scholar 

  • VanHalbeeckH. (1994) Curr. Opin. Struct. Biol., 4, 697–709.

    Google Scholar 

  • VarkiA. (1994) Proc. Natl. Acad. Sci. USA, 91, 7390–7397.

    Google Scholar 

  • WangJ., HodgesR.S. and SykesB.D. (1995) J. Am. Chem. Soc., 117, 8627–8634.

    Google Scholar 

  • WagnerG. (1983) J. Magn. Reson., 55, 151–156.

    Google Scholar 

  • WeiA., BoyK.M. and KishiY. (1995) J. Am. Chem. Soc., 117, 9432–9436.

    Google Scholar 

  • YuenC.-T., LawsonA.M., ChaiW., LarkinM., StollM.S., StuartA.C., SullivanF.X., AhernT.J. and FeiziT. (1992) Biochemistry, 31, 9126–9131.

    Google Scholar 

  • ZhaoD. and JardetzkyO. (1994) J. Mol. Biol., 239, 601–607.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthault, P., Birlirakis, N., Rubinstenn, G. et al. Solution structure of a LewisX analogue by off-resonance 1H NMR spectroscopy without use of an internal distance reference. J Biomol NMR 8, 23–35 (1996). https://doi.org/10.1007/BF00198137

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198137

Keywords

Navigation