Skip to main content
Log in

On the behaviour of periodic disturbances introduced into a turbulent channel flow by an oscillating airfoil

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

This paper is on the propagation characteristics of disturbances in turbulent shear flow. Periodic disturbances are introduced into a fully developed turbulent channel flow by an airfoil executing pitching oscillations. Hot-wire measurements are done on the mean and fluctuating velocities, on the Reynolds stresses and their spectra. The spectral data are evaluated to obtain the decay characteristics of the induced disturbance in this flow. The results show that the disturbance propagation in this flow is characterised by different decay rates in the regions near and far from the disturbance source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

h :

semi-height of the channel

X 1, x 2, x 3 :

cartesian coordinates in the streamwise crosswise and spanwise directions respectively; channel walls are situated at x 2 = 0 and 2 h

{ovu} 1 :

mean velocity in the streamwise direction

U max = U ref :

centre-line velocity of fully developed flow in the channel

u rw :

friction velocity

{ie275-01}:

velocity fluctuations long-time averaged Reynolds' normal and shear stresses

ω s , f s :

excitation frequency (ω s= 2πf s)

E u′ 1 u′1, E u′ 2 u′ 2,E u′ 1 u′ 2 :

spectra of Reynolds' stresses

α i :

decay rate, Eqs. (2) and (3)

G :

datum level

S :

disturbance

B :

basic flow, Eq. (4)

References

  • Acharya, M.; Reynolds, W. C. 1975: Measurements and prediction of a fully developed turbulent channel flow with imposed controlled oscillations. Thermosciences Division, Dept. of Mechanical Engineering, Stanford University. Tech. rep. no. TF-8

  • Bandyopadhyay, P. R. 1986: Mean flow in turbulent boundary layers disturbed to alter skin friction (review). J. Fluids Eng. 108, 127–140

    Google Scholar 

  • Bechert, D. W. 1976: Die Steuerung eines ebenen Freistrahles durch eine seitliche Wechselströmung, erzeugt in einem Schallfed. Z. Flugwiss. 24, 25–33

    Google Scholar 

  • Carr, L. W. 1981: A compilation of unsteady turbulent boundary layer experimental data. Agardograph no. 265

  • Cousteix, J.; Houdeville, R.; Javelle, J. 1981: Response of a turbulent boundary layer to a pulsation of the external flow with and without adverse pressure gradient. In: Michel, R.; Cousteix, J.; Houdeville, R. (eds.) Unsteady turbulent shear flows (IUTAM-Symposium, Toulouse, France), pp. 120–144. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Eichelbrenner, E. A. (ed.) 1972: Recent research on unsteady boundary layers. IUTAM Symposium 1971, vols. 1 and 2. Presses de l'Université Laval, Québec, Canada

  • Fiedler, H. E.; Mensing, P. 1985: The plane turbulent shear layer with periodic excitation. J. Fluid Mech. 150, 281–309

    Google Scholar 

  • Hussain, A. K. M. F.; Reynolds, W. C. 1970: The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41, 241–258

    Google Scholar 

  • Hussain, A. K. M. F.; Reynolds, W. C. 1972: The mechanics of an organized wave in turbulent shear flow, part 2. J. Fluid Mech. 54, 241–261

    Google Scholar 

  • Kendall, J. M. 1970: The turbulent boundary layer over a wall with progressive surface waves. J. Fluid Mech. 41, 259–281

    Google Scholar 

  • Kiske, S.; Vasanta Ram, V.; Pfarr, K. 1981: The effect of disturbed turbulence structure on the preston-tube method of measuring wall shear stress. Aeronaut. Q. 32, 354–367 [Corrigendum in Aeronaut. Q. 33 (1982) 104

    Google Scholar 

  • Lee Norris III, H.; Reynolds, W. C. 1975: Turbulent channel flow with a moving wavy boundary. Thermosciences Division, Dept. of Mechanical Engineering, Standford University. Tech. rep. no. TF-7

  • Liepmann, H. W.; Narasimha, R. (eds.) 1988: Turbulence management and relaminarisation (IUTAM Symposium, Bangalore, India). Berlin, Heidelberg, New York: Springer

  • Mao, Z.-X.; Hanratty, T. J. 1986: Studies of wall-shear stress in a turbulent pulsating flow. J. Fluid Mech. 170, 545–564

    Google Scholar 

  • Maruyama, T.; Kuribayashi, T.; Mizushina, T. 1976: The structure of the turbulence in transient pipe flows. J. Chem. Eng. Jpn. 9, 431–439

    Google Scholar 

  • Michel, R.; Cousteix, J.; Houdeville, R. (eds.) 1981: Unsteady turbulent shear flows (IUTAM Symposium, Toulouse, France). Berlin, Heidelberg, New York: Springer

  • Miyata, M.; Vasanta Ram, V. 1980: A study of the scales involved in the adjustment of turbulent channel flow to a step change in wall roughness. Proc. 1st Asian Congr. Fluid Mech., Bangalore, India

  • Oguchi, H.; Inoue, O. 1984: Mixing layer produced by a screen and its dependence on initial conditions. J. Fluid Mech. 142, 217–231

    Google Scholar 

  • Oster, D.; Wygnanski, I. 1982: The forced mixing layer between parallel streams. J. Fluid Mech. 123, 91–130

    Google Scholar 

  • Prabhu, A.; Vasudevan, B.; Kailasnath, P.; Kulkarni, R. I.; Narasimha, R. 1988: Blade manipulators in channel flow. In: Liepmann, H. W.; Narasimha, R. (eds.) Turbulence management and relaminarisation (IUTAM Symposium, Bangalore, India), pp. 97–107. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Ramaprian, B. R.; Tu, S. W.; Menendez, A. N. 1983: Periodic turbulent shear flows. Proc. 4th Symp. Turbulent Shear Flows, Karlsruhe, F. R. Germany, pp. 8.18–8.23

  • Reynolds, W. C.; Hussain, A. K. M. F. 1972: The mechanics of an organized wave in turbulent shear flow, part 3. J. Fluid Mech. 54, 263–288

    Google Scholar 

  • Telionis, D. 1981: Unsteady viscous flows (Springer Series in Computational Physics). Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Vasanta Ram, V. 1987: On the equations governing the propagation of disturbances in turbulent shear flow. In: Comte-Bellot, G.; Mathieu, J. (eds.) Advances in turbulence, pp. 310–318. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Vlasov, Ye. V.; Ginevsky, A. S. 1974: Generation and suppression of turbulence in an axisymmetric turbulent jet in the presence of an acoustic influence (in Russian). Izv Akad Nauk SSSR Mekh. Zhidk. Gaza 6, 37–43 (Translation: NASA TT F-15721)

    Google Scholar 

  • Wygnanski, I.; Oster, D.; Fiedler, H.; Dziomba, B. 1979: On the perseverence of a quasi two-dimensional eddy-structure in a turbulent mixing layer. J. Fluid Mech. 93, 325–335

    Google Scholar 

  • Wygnanski, I.; Champagne, F.; Marsali, B. 1986: On the large scale structures in two dimensional, small-deficit, turbulent wakes. J. Fluid Mech. 168, 31–71

    Google Scholar 

  • Zaman, K. B. M. Q.; Hussain, A. K. M. F. 1981: Turbulence suppression in free shear flows by controlled excitation. J. Fluid Mech. 103, 133–159

    Google Scholar 

  • Zhou, M. D.; Liu, T. S. 1987: Stability investigation in nominally two-dimensional laminar boundary layers by means of heat pulsing. In: Perspectives in turbulence studies (eds. Meier, H. U.; Bradshaw, P.) pp. 47–70. Berlin, Heidelberg, New York: Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiske, S., Vasanta Ram, V.I. On the behaviour of periodic disturbances introduced into a turbulent channel flow by an oscillating airfoil. Experiments in Fluids 7, 275–284 (1989). https://doi.org/10.1007/BF00198008

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198008

Keywords

Navigation