Skip to main content
Log in

Phenomenology of Kármán vortex streets in oscillatory flow

  • Originals
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

Vortex wakes of circular cylinders at low Reynolds numbers have been investigated. Sound waves are superimposed on the flow in mean flow direction. In this configuration the Kármán vortices are shed at the sound frequency or at subharmonics of the sound frequency. The Karman vortex street is treated as a nonlinear self-excited flow oscillator with forced oscillations. Using a flow visualization technique a variety of wake structures has been identified as a function of sound frequency and sound amplitude, but independent of the Reynolds number. The superimposed sound influences the distribution of circulation and accordingly the shedding mechanism. Primary vortex and secondary vortex are shed simultaneously from one side of the cylinder. The alternate vortex shedding is arranged spatially and temporally. Structures along the vortex axes are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Archibald, F. S. 1975: Self-excitation of an acoustic resonance by vortex shedding. J. Sound Vib. 38, 81–103

    Google Scholar 

  • Armstrong, B. J.; Barnes, F. H.; Grant, I. 1987: A comparison of the structure of the wake behind a circular cylinder in a steady flow with that in a perturbed flow. Phys. Fluids 30, 19–26

    Google Scholar 

  • Barbi, C.; Favier, D. P.; Maresca, C. A.; Telionis, D. P. 1986: Vortex shedding and lock-on of a circular cylinder in oscillatory flow. J. Fluid Mech. 170, 527–544

    Google Scholar 

  • Batchelor, G. K.; Shen, C. 1985: Thermophoretic deposition of particles in gas flowing over cold surfaces. J. Colloid Interface Sc. 107, 21–37

    Google Scholar 

  • Bearman, P. W. 1984: Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16, 195–222

    Google Scholar 

  • Bearman, P. W.; Graham, J. M. R. 1980: Vortex shedding from bluff bodies in oscillatory flow: A report on Euromech 119. J. Fluid Mech. 99, 225–245

    Google Scholar 

  • Bearman, P. W.; Downie, M. J.; Graham, J. M. R.; Obasaju, E. D. 1985: Forces on cylinders in viscous oscillatory flow at low Keulegan-Carpenter numbers. J. Fluid Mech. 154, 337–356

    Google Scholar 

  • Benaroya, H.; Lepore, J. A. 1983: Statistical flow-oscillator modeling of vortex-shedding. J. Sound Vibr. 86, 159–179

    Google Scholar 

  • Berger, E. 1964: Unterdrückung der laminaren Wirbelströmung und des Turbulenzeinsatzes der Kármánschen Wirbelstraße im Nachlauf eines schwingenden Zylinders bei kleinen Reynoldszahlen. Jahrb. d. WGLR, 164–172

  • Berger, E.; Wille, R. 1972: Periodic flow phenomena. Annu. Rev. Fluid Mech. 4, 313–340

    Google Scholar 

  • Bishop, R. E. D.; Hassan, A. Y. 1964: The lift and drag forces on a circular cylinder oscillating in a flowing fluid. Proc. R. Soc. London Ser. A 277, 51–75

    Google Scholar 

  • Blevins, R. D. 1985: The effect of sound on vortex shedding from cylinders. J. Fluid Mech. 161, 217–237

    Google Scholar 

  • Bouard, R.; Coutanceau, M. 1980: The early stage of development of the wake behind an impulsively started cylinder for 40 < Re < 104. J. Fluid Mech. 101, 583–607

    Google Scholar 

  • Cimbala, J. M. 1984: Large structure in the far wakes of two-dimensional bluff bodies. Dissertation, California Institute of Technology, Pasadena/CA, USA

    Google Scholar 

  • Cimbala, J. M.; Nagib, H. M.; Roshko, A. 1988: Large structure in the far wakes of two-dimensional bluff bodies. J. Fluid Mech. 190, 265–298

    Google Scholar 

  • Corke, T.; Koga, D.; Drubka, R.; Nagib, H. 1977: A new technique for introducing controlled sheets of smoke streaklines in wind tunnels. JEEE Publication 77-CH 1251-8 AES, 74–80

  • Couder, Y., Basdevant, C. 1986: Experimental and numerical study of vortex-couples in two dimensional flow. J. Fluid Mech. 173, 225–251

    Google Scholar 

  • Desruelle, D. 1983: Beyond the Kármán vortex street. M. Sc. Thesis, Illinois Insitute of Technology, Chicago/IL, USA

    Google Scholar 

  • Detemple, E. 1983: Experimente zum Einfluß von Schall auf Kármánsche Wirbelstraßen. Diplomarbeit, Georg-August-Universität, Göttingen, FRG

    Google Scholar 

  • Detemple, E. 1986: Zur Phänomenologie Kármánscher Wirbelstraßen in durch Schall überlagerter Strömung. Dissertation, Georg-August-Universität, Göttingen, FRG

    Google Scholar 

  • Gaster, M. 1969: Vortex shedding from slender cones at low Reynolds numbers. J. Fluid Mech. 38, 565–576

    Google Scholar 

  • Gerich, D.; Eckelmann, H. 1982: Influence of end plates and free ends on the shedding frequency of circular cylinders. J. Fluid Mech. 122, 109–121

    Google Scholar 

  • Graham, J. M. R. 1969: The effect of end-plates on the two-dimensionality of a vortex wake. Aeronaut. Q. 20, 237–247

    Google Scholar 

  • Graham, J. M. R. 1980: The forces on sharp-edged cylinders in oscillatory flow at low Keulegan-Carpenters numbers. J. Fluid Mech. 97, 331–346

    Google Scholar 

  • Griffin, O. M. 1974: The effects of synchronized cylinder vibrations on vortex formation and strength, velocity fluctuations, and mean flow. In: Flow-induced structural vibrations (ed. Naudascher, E.) IUTAM/IAHR symp. Karlsruhe, FRG, August 1972. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Griffin, O. M.; Ramberg, S. E. 1974: The vortex-street wakes of vibrating cylinders. J. Fluid Mech. 66, 553–576

    Google Scholar 

  • Griffin, O. M.; Ramberg, S. E. 1976: Vortex shedding from a cylinder vibrating in line with an incident uniform flow. J. Fluid Mech. 75, 257–271

    Google Scholar 

  • Hama, F. R. 1957: Three-dimensional vortex pattern behind a circular cylinder. J. Aeronaut. Sci. 24, 156–158

    Google Scholar 

  • Humphreys, J. S. 1960: On a circular cylinder in a steady wind at transition Reynolds numbers. J. Fluid Mech. 9, 603–612

    Google Scholar 

  • Hussain, A. K. M. F.; Ramjee, V. 1976: Periodic wake behind a circular cylinder at low Reynolds numbers. Aeronaut. Q. 27, 123–142

    Google Scholar 

  • Ishiwata, R.; Ohashi, H. 1984: Fluid forces on a cylinder in oscillating flow. Bull. JSME 27, 1881–1886

    Google Scholar 

  • Koopmann, G. H. 1967: The vortex wakes of vibrating cylinders at low Reynolds numbers. J. Fluid Mech. 28, 501–512

    Google Scholar 

  • Matsui, T.; Okude, M. 1983: Formulation of the secondary vortex street in the wake of a circular cylinder. In: Structure of complex turbulent shear flow (eds. Dumas, R.; Fulachier, L.) pp. 156–164. IUTAM symp. Marseille, France, September 1982. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Merzkirch, W. 1974: Flow visualization. New York: Academic Press

    Google Scholar 

  • Müller, E.-A.; Didden, N. 1980: Zur Erzeugung der Zirkulation bei der Bildung eines Ringwirbels an einer Düsenmündung. Strojnicky Casopis 31, 363–373

    Google Scholar 

  • Nishioka, M.; Sato, H. 1974: Measurement of velocity distributions in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 65, 97–112

    Google Scholar 

  • Nishioka, M.; Sato, H. 1978: Mechanism of determination of the shedding frequency of vortices behind a cylinder at low Reynolds numbers. J. Fluid Mech. 89, 49–60

    Google Scholar 

  • Okamoto, S.; Hirose, T.; Adachi, T. 1981: The effect of sound on the vortex-shedding from a circular-cylinder. Bull. JSME 24, 45–53

    Google Scholar 

  • Oshima, Y.; Natsume, A. 1980: Flow field around an oscillating airfoil. In: Flow visualization II (ed. Merzkirch, W.) pp. 295–299. Washington/DC: Hemisphere

    Google Scholar 

  • Peltzer, R. D.; Rooney, D. M. 1985: Vortex shedding in a linear shear flow from a vibrating marine cable with attached bluff bodies. J. Fluids Eng. 107, 61–66

    Google Scholar 

  • Prandtl, L.; Tietjens, O. G. 1934: Applied hydro- and aerome- chanics. New York: McGraw-Hill

    Google Scholar 

  • Sreenivasan, K. R. 1985: Transitional and turbulent wakes and chaotic dynamical systems. In: Nonlinear dynamics of transcritical flow (eds. Jordan, H. L.; Oertel, H.; Robert, K.) (Lecture Notes Eng.) Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Stansby, P. K. 1976: The locking-on of vortex shedding due to the cross-stream vibration of circular cylinders in uniform and shear flows. J. Fluid Mech. 74, 641–665

    Google Scholar 

  • Strouhal, V. 1878: Über eine besondere Art der Tonerregung. Ann. Phys. Chem. 5, 217–251

    Google Scholar 

  • Taneda, S. 1972: Visualization experiments on unsteady viscous flows around cylinders and plates. In: Recent research on unsteady boundary layers (ed. Eichelbrenner, E. A.) pp. 1165–1215. IUTAM symp. Quebec, Canada, May 1971. Québec: Les Presses de l'Université Laval

    Google Scholar 

  • Tanida, Y.; Okajima, A. Watanabe, Y. 1973: Stability of a circular cylinder oscillating in uniform flow or in a wake. J. Fluid Mech. 61, 769–784

    Google Scholar 

  • Van Atta, C. W.; Gharib, M. 1987: Ordered and chaotic vortex streets behind circular cylinders at low Reynolds numbers. J. Fluid Mech. 174, 113–133

    Google Scholar 

  • Wei, T.; Smith, C. R. 1986: Secondary vortices in the wake of circular cylinders. J. Fluid Mech. 169, 513–533

    Google Scholar 

  • Williamson, C. H. K. 1985: Sinusoidal flow relative to circular cylinders. J. Fluid Mech. 155, 141–174

    Google Scholar 

  • Williamson, C. H. K.; Roshko, A. 1987: Vortex formation in the wake of an oscillating cylinder. Personal communication

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Detemple-Laake, E., Eckelmann, H. Phenomenology of Kármán vortex streets in oscillatory flow. Experiments in Fluids 7, 217–227 (1989). https://doi.org/10.1007/BF00198001

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198001

Keywords

Navigation