Skip to main content
Log in

Differential accumulation of hydroxyproline-rich glycoproteins in bean root nodule cells infected with a wild-type strain or a C4-dicarboxylic acid mutant of Rhizobium leguminosarum bv. phaseoli

  • Published:
Planta Aims and scope Submit manuscript

Abstract

An antiserum raised against deglycosylated hydroxyproline-rich glycoproteins (HPGPs) from melon (Cucumis melo L.) was used to study the relationship between Rhizobium infection and induction of HRGPs in bean (Phaseolus vulgaris L.) root nodule cells infected with either the wild-type or a C4-dicarboxylic acid mutant strain of Rhizobium leguminosarum bv. phaseoli. In effective nodules, where fixation of atmospheric dinitrogen is taking place, HRGPs were found to accumulate mainly in the walls of infected cells and in peribacteroid membranes surrounding groups of bacteroids. Internal ramifications of the peribacteroid membrane were also enriched in HRGPs whereas the peribacteroid space as well as the bacteroids themselves were free of these glycoproteins. In mutant-induced root nodules, HRGPs were specifically associated with the electron-dense, laminated structures formed in plastids as a reaction to infection by this mutant. The presence of HRGPs was also detected in the host cytoplasm. The aberrant distribution of HRGPs in infected cells of mutant-induced nodules likely reflects one aspect of the altered host metabolism in relation to peribacteroid-membrane breakdown. The possibility that the antiserum used for HRGP localization may have cross-reacted with ENOD 2 gene products is discussed in relation to amino-acid sequences and sites of accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GAR gold antibodies:

gold-conjugated goat antiserum to rabbit immunoglobulins

HRP:

deglycosylated hydroxyproline-rich glycoprotein

HRGP:

hydroxyproline-rich glycoprotein

PHB:

poly-B-hydroxybutyrate

PBS:

phosphate-buffered saline

TFMS:

trifluoromethane sulfonic acid

WT:

wild-type

B :

bacteroid

Cy :

cytoplasm

HCW :

host cell wall

IS :

intercellular space

IT :

infection thread

LS :

laminated structure

N :

nucleus

P :

peroxisome

PHB :

poly-β-hydroxybutyrate

PM :

peribacteroid membrane

PS :

peribacteroid space

S :

starch grain

Va :

vacuole

References

  • Averyhart-Fullard, A.R., Datta, K., Marcus, A. (1988) A hydroxyproline-rich glycoprotein in the soybean cell wall. Proc. Natl. Acad., Sci. USA 85, 1082–1085

    Google Scholar 

  • Bal, A.K., Shantharam, S., Verma, D.P.S. (1980) Changes in the outer cell wall of Rhizobium during development of the root nodule symbiosis in soybean. Can. J. Microbiol. 26, 1096–1103

    Google Scholar 

  • Bell, A.A. (1981) Biochemical mechanisms of disease resistance. Annu. Rev. Plant Physiol. 32, 21–81

    Google Scholar 

  • Bendayan, M., Puvion, E. (1984) Ultrastructural localization of nucleic acids through several cytochemical techniques on osmium-fixed tissues. J. Histochem. Cytochem. 32, 1185–1191

    Google Scholar 

  • Benhamou, N., Mazau, D., Esquerré-Tugayé, M.T. (1990) Immunocytochemical localization of hydroxyproline-rich glycoproteins in tomato root cells infected by Fusarium oxysporum f. sp. radicis-lycopersici: Study of a compatible interaction. Phytopathology 80, 163–173

    Google Scholar 

  • Bradley, D.J., Butcher, G.W., Galfre, G., Wood, E.A., Brewin, N.J. (1986) Physical association between the peribacteroid membrane and lipopolysaccharides from the bacteroid outer membrane in Rhizobium-infected pea root nodule cells. J. Cell Sci. 85, 47–61

    Google Scholar 

  • Bradley, D.J., Wood, E.A., Galfre, G., Butcher, G.W., Brewin, N.J. (1988) Isolation of monoclonal antibodies reacting with peribacteroid membranes and other components of pea root nodules containing Rhizobium leguminosarum. Planta 173, 149–160

    Google Scholar 

  • Brangeon, J., Hirel, B., Forchioni, A. (1989) Immunogold localization of glutamine synthetase in soybean leaves, roots, and nodules. Protoplasma 151, 88–97

    Google Scholar 

  • Brewin, N., Robertson, J.G., Wood, E., Wells, B., Larkins, A.P., Galfre, G., Butcher, G.W. (1985) Common antigens in peribacteroid and plasma membranes of legume root nodule cells, as revealed by monoclonal antibodies. EMBO J. 4, 605–611

    Google Scholar 

  • Collinge, D.B., Sluzarenko, A.J. (1987) Plant gene expression in response to pathogens. Plant Mol. Biol. 9, 389–410

    Google Scholar 

  • Corbin, D.R., Sauer, N., Lamb, C.J. (1987) Differential regulation of a hydroxyproline-rich glycoprotein gene family in wounded and infected plants. Mol. Cell. Biol. 7, 4337–4344

    Google Scholar 

  • Day, D.A., Udvardi, M.K. (1989) Membrane interface of the Bradyrhizobium japonicum-Glycine max symbiosis: peribacteroid units from soybean nodules. Aust. J. Plant Physiol. 16, 69–84

    Google Scholar 

  • Edge, A.S.B., Faltynek, C.R., Hof, L., Reichert, L.E. Jr., Weber, P. (1981) Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Anal. Biochem. 118, 131–137

    Google Scholar 

  • Esquerré-Tugayé, M.T., Lamport, D.T.A. (1979) Cell surfaces in plant-microorganism interactions. I. A structural investigation of cell wall-hydroxyproline-rich glycoproteins which accumulate in fungus-infected plants. Plant Physiol. 64, 314–319

    Google Scholar 

  • Esquerré-Tugayé, M.T., Lafitte, C., Mazau, D., Toppan, A., Touzé, A. (1979) Cell surfaces in plant-microorganism interactions. Evidence for the accumulation of hydroxyproline-rich glycoproteins in the cell wall of diseased plants as a defense mechanism. Plant Physiol. 64, 320–326

    Google Scholar 

  • Faucher, C., Maillet, F., Vasse, J., Rosenberg, C., Van Brussel, A.A.N., Truchet, G., Denarié, J. (1988) Rhizobium meliloti host range Nod H gene determines production of an alfalfa-specific extracellular signal. J. Bacteriol. 165, 517–522

    Google Scholar 

  • Finan, T.M., Wood, J.M., Jordan, D.C. (1983) Symbiotic properties of C4-dicarboxylic acid transport mutants of Rhizobium leguminosarum. J. Bacteriol. 154, 1403–1413

    Google Scholar 

  • Fortin, M.A., Zelechowska, M., Verma, D.P.S. (1985) Specific targeting of membrane nodulins to the bacteroid-enclosing compartment in soybean nodules. EMBO J. 4, 3041–3046

    Google Scholar 

  • Franssen, H.J., Nap, J.P., Gloudemans, T., Stiekema, H., Van Dam, H., Govers, F., Louwerse, J., Van Kanmen, A., Bisseling, T. (1987) Characterization of cDNA from nodulin-75 of soybean: a gene product involved in early stages or root nodule development. Proc. Natl. Acad. Sci. USA 84, 4495–499

    Google Scholar 

  • Glenn, A.R., McKay, I.A., Arwas, R., Dilworth, M.J. (1984) Sugar metabolism and the symbiotic properties of carbohydrate mutants in Rhizobium leguminosarum. J. Gen. Microbiol. 130, 239–245

    Google Scholar 

  • Gloudemans, T., Bisseling, T. (1989) Plant gene expression in early stages of Rhizobium-legume symbiosis. Plant Sci. 65, 1–14

    Google Scholar 

  • Halverson, J.L., Stacey, G. (1986) Signal exchange in plant-microbe interactions. Microbiol. Rev. 50, 193–225

    Google Scholar 

  • Lafontaine, P.J., Lafrenière, C., Chalifour, F.P., Dion, P., Antoun, H. (1989) Carbohydrate and organic acid composition of effective and ineffective root nodules of Phaseolus vulgaris L. Physiol. Plant 76, 507–513

    Google Scholar 

  • Lafontaine, P.J., Benhamou, N., Antoun, H. (1990) Evidence for the occurrence of laminated structures rich in cellulosic β-1,4glucans in plastids of Phaseolus vulgaris root nodule cells infected by an ineffective C4-dicarboxylic acid mutant of Rhizobium leguminosarum bv. phaseoli. Planta 180, 312–323

    Google Scholar 

  • Lalande, R., Antoun, H., Paré, T., Joyal, P. (1986) Effets de l'inoculation avec les souches du Rhizobium leguminosarum biovar phaseoli sur le rendement et la teneur en azote du haricot (Phaseolus vulgaris L.) Naturaliste Canadien 113, 337–346

    Google Scholar 

  • Lamport, D.T.A. (1977) Structure, biosynthesis, and significance of cell wall glycoproteins. Rec. Adv. Phytochem. 11, 79–111

    Google Scholar 

  • Leach, J.E., Cantrell, M.A., Sequeira, L. (1982) Hydroxyprolinerich bacterial agglutinin from potato. Plant Physiol. 70, 1353–1358

    Google Scholar 

  • Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Promé, J.C., Denarié, J. (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344, 781–784

    Google Scholar 

  • Marinkovitch, V.A. (1964) Purification and characterization of the hemagglutinin present in potatoes. J. Immunol. 93, 732–741

    Google Scholar 

  • Mazau, D. (1987) Étude cellulaire et moléculaire des glycoprotéines riches en hydroxyproline dans les interactions plantes — microorganismes. Thèse de doctorat d'État, Université Paul Sabatier, Toulouse, France

    Google Scholar 

  • Mazau, D., Esquerré-Tugayé, M.T. (1986) Hydroxyproline-rich glycoprotein accumulation in the cell walls of plants infected by various pathogens. Physiol. Mol. Plant Pathol. 86, 540–546

    Google Scholar 

  • Mazau, D., Rumeau, D., Esquerré-Tugayé, M.T. (1988) Two different families of hydroxyproline-rich glycoproteins in melon callus. Plant Physiol. 86, 540–546

    Google Scholar 

  • Mellon, J.E., Helgeson, J.P. (1982) Interaction of a hydroxyprolinerich glycoprotein from tobacco callus with potential pathogens. Plant Physiol. 70, 401–405

    Google Scholar 

  • Moore, P.J., Staehelin, L.A. (1988) Immunogold localization of the cell wall-matrix polysaccharides rhamnogalacturonan I and xyloglucan during cell expansion and cytokinesis in Trifolium pratense L.; implication of secretory pathways. Planta 174, 433–445

    Google Scholar 

  • Newcomb, W., Creighton, S., Latta, L. (1981) A reinvestigation of the origin of the peribacteroid membrane in root nodules of Vicia faba. Can. J. Bot. 59, 1547–1552

    Google Scholar 

  • O'Connell, R.J., Brown, I.R., Mansfield, J.W., Bailey, J.A., Mazau, D., Rumeau, D., Esquerré-Tugayé, M.T. (1990) Immunocytochemical localization of hydroxyproline-rich glycoproteins accumulating in melon and bean at sites of resistance to bacteria and fungi. Mol. Plant-Microbe Interact. 3, 33–40

    Google Scholar 

  • Robertson, J.G., Wells, B., Brewin, N.J., Wood, E., Knight, C.D., Downie, J,A. (1985) The legume-Rhizobium symbiosis: a cell surface interaction. J. Cell Sci. Suppl. 2, 317–331

    Google Scholar 

  • Roby, D., Toppan, A., Esquerré-Tugayé, M.T. (1985) Cell surfaces in plant-microorganism interactions. V. Elicitors of fungal and plant origin trigger the synthesis of ethylene and of cell wall hydroxyproline-rich glycoproteins in plants. Plant Physiol. 77, 700–704

    Google Scholar 

  • Ronson, C.W., Lyttleton, P., Robertson, J.G. (1981) C4-dicarboxylate transport mutants of Rhizobium trifolii form ineffective nodules on Trifolium repens. Proc. Natl. Acad. Sci. USA 78, 4284–4288

    Google Scholar 

  • Sadowsky, M.J., Cregan, P.B., Rodriguez-Quinones, F., Keyser, H.H. (1989) Microbial influence of gene-for-gene interactions in legume-Rhizobium symbioses. In: Beltsville Symp. Beltsville, Md 30

  • Showalter A.M., Rumeau, D. (1990) Molecular biology of plant cell wall hydroxyproline-rich glycoproteins. In: Recognition and assembly of animal and plant extracellular matrix, Adair, S., Mecham, R.P., eds. (In press)

  • Showalter, A.M., Varner, J.E. (1989) Plant hydroxyproline-rich glycoproteins. In: The Biochemistry of plants; A comprehensive treatise, vol. 15, pp. 485–520 Stumpf, P.K., Conn, E.E., eds. Academic Press, New York

    Google Scholar 

  • Spanu, P., Boller, T., Ludwig, A., Wiemken, A., Faccio, A., Bonfante-Fasolo, P. (1989) Chitinase in roots of mycorrhizal Allium porum: regulation and localization. Planta 177, 447–455

    Google Scholar 

  • Udvardi, M.K., Salom, C.S., Day, D.A. (1988) Transport of lglutamate across the bacteroid membrane but not the peribacteroid membrane from soybean root nodules. Mol. Plant Microbe Interact. 1, 250–254

    Google Scholar 

  • Udvardi, M.K., Day, D.A. (1989) Electrogenic ATPase activity on the peribacteroid membrane of soybean (Glycine max L.) root nodules. Plant Physiol. 90, 982–987

    Google Scholar 

  • Van den Bosch, K.A., Newcomb, E.H. (1986) Immunogold localization of nodule-specific uricase in developing soybean root nodules. Planta 167, 425–436

    Google Scholar 

  • Van den Bosch, K.A., Newcomb, E.H. (1988) The occurrence of leghemoglobin protein in the uninfected intersticial cells of soybean root nodules. Planta 175, 447–451

    Google Scholar 

  • Van de Wiel, C., Scheres, B., Franssen, K., Van Lierop, M.J., Van Lammeren, A., Van Kammen, A., Bisseling, T. (1990) The early nodulin transcript ENOD2 is located in the nodule parenchyma (inner cortex) of pea and soybean root nodules. EMBO J. 9, 1–7

    Google Scholar 

  • Verma, D.P.S., Long, S. (1983) The molecular biology of Rhizobium-legume symbiosis. Int. Rev. Cytol. Suppl 14, 211–245

    Google Scholar 

  • Werner, D., Mörschel, E., Kort, R., Mellor, R.B., Bassarab, S. (1984) Lysis of bacteroids in the vicinity of the host cell nucleus in an ineffective (Fix-) root nodule of soybean (Glycine max). Planta 162, 8–16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by grants from the National Research Council of Canada and from the Ministère de l'Éducation du Québec (FCAR). The authors thank S. Noël for excellent technical assistance and C. Parent for typing this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benhamou, N., Lafontaine, P.J., Mazau, D. et al. Differential accumulation of hydroxyproline-rich glycoproteins in bean root nodule cells infected with a wild-type strain or a C4-dicarboxylic acid mutant of Rhizobium leguminosarum bv. phaseoli . Planta 184, 457–467 (1991). https://doi.org/10.1007/BF00197893

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00197893

Key words

Navigation