Skip to main content

NMRPipe: A multidimensional spectral processing system based on UNIX pipes

Summary

The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks.

This is a preview of subscription content, access via your institution.

Abbreviations

1D, 2D, 3D:

one-, two-, three-dimensional

nD:

multidimensional

CPU:

central processing unit

FID:

free induction decay

I/O:

input/output

LP:

linear prediction

MEM:

maximum entropy method

Mb:

megabyte

NOE:

nuclear Overhauser effect

References

  • Barkhuijsen H., De Beer R., Bovée W.M.M.J. and VanOrmondt D. (1985) J. Magn. Reson., 61, 465–481.

    Google Scholar 

  • Barkhuijsen H., DeBeer R. and VanOrmondt D. (1987) J. Magn. Reson., 73, 553–557.

    Google Scholar 

  • Bax A. and Grzesiek S. (1993) Acc. Chem. Res., 26, 131–138.

    Google Scholar 

  • Callaghan P.T., MacKay A.L., Pauls K.P., Soderman O. and Bloom M. (1984) J. Magn. Reson., 56, 101–109.

    Google Scholar 

  • Cavanagh J., Palmer A.G., Wright P.E. and Rance M. (1991) J. Magn. Reson., 91, 429–436.

    Google Scholar 

  • Delsuc M.A., Ni F. and Levy G.C. (1987) J. Magn. Reson., 73, 548–552.

    Google Scholar 

  • Delsuc M.A. (1989) Maximum Entropy and Bayesian Methods, Kluwer, Amsterdam.

    Google Scholar 

  • Friedrichs M.S. (1995) J. Biomol. NMR, 5, 147–153.

    Google Scholar 

  • Garrett D.S., Powers R., Gronenborn A.M. and Clore G.M. (1991) J. Magn. Reson., 94, 214–220.

    Google Scholar 

  • Gull S.F. and Daniell G.J. (1978) Nature, 272, 686–690.

    Google Scholar 

  • Güntert P., Doetsch V., Wider G. and Wüthrich K. (1992) J. Biomol. NMR, 2, 619–629.

    Google Scholar 

  • Heller D. and VanRaalte T. (1993) XView Programming Manual, O'Reilly and Associates, Inc., Sebastopol, CA.

    Google Scholar 

  • Hoch J.C. (1985) Rowland Institute for Science Technical Memorandum RIS-18t, Rowland Institute, Cambridge, MA.

    Google Scholar 

  • Hoch J.C. (1989) Methods Enzymol., 176, 216–241.

    CAS  Google Scholar 

  • Hoch J.C., Stern A.S., Donoho D.L. and Johnstone I.M. (1990) J. Magn. Reson., 86, 236–246.

    Google Scholar 

  • Hore P.J. (1985) J. Magn. Reson., 62, 561–567.

    Google Scholar 

  • Johnson B. and Blevins R.A. (1994) J. Biomol. NMR, 4, 603–614.

    Google Scholar 

  • Johnson S. (1986) In UNIX Programmers Manual: Supplementary Documents 1, University of California, Berkeley, CA.

    Google Scholar 

  • Kauppinen J. and Saario E.K. (1993) Appl. Spectrosc., 47, 1123–1127.

    CAS  PubMed  Google Scholar 

  • Kay L.E., Marion D. and Bax A. (1989) J. Magn. Reson., 84, 72–84.

    Google Scholar 

  • Kay L.E., Ikura M., Zhu G. and Bax A. (1991) J. Magn. Reson., 91, 422–428.

    Google Scholar 

  • Kay L.E., Keifer P. and Saarinen T. (1992) J. Am. Chem. Soc., 114, 10663–10666.

    Google Scholar 

  • Kernighan B.W. and Pike R. (1984) The UNIX Programming Environment, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Kernighan B.W. and Ritchie D.M. (1988) The C Programming Language, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Kjaer M., Andersen K.V. and Poulsen F.M. (1994) Methods Enzymol., 239, 288–307.

    Google Scholar 

  • Kraulis P.J. (1989) J. Magn. Reson., 84, 627–633.

    Google Scholar 

  • Kraulis P.J., Domaille P.J., Campbell-Burk S.L., VanAken T. and Laue E.D. (1994) Biochemistry, 33, 3515–3531.

    Google Scholar 

  • Kumaresan R. and Tufts D.W. (1982) IEEE Trans. Acoust. Speech Signal Process. 30, 833–840.

    Google Scholar 

  • Laue E.D., Skilling J. and Staunton J. (1985a) J. Magn. Reson., 63, 418–424.

    Google Scholar 

  • Laue E.D., Skilling J., Staunton J., Sibisi S. and Brereton R. (1985b) J. Magn. Reson., 62, 437–452.

    Google Scholar 

  • Laue E.D., Mayger M.R., Skilling J. and Staunton J. (1986) J. Magn. Reson., 68, 14–29.

    Google Scholar 

  • Levy G.C., Delaglio F., Macur A. and Begemann J. (1986) Comput. Enhanced Spectrosc., 3, 1–12.

    Google Scholar 

  • Marion D. and Wüthrich K. (1983) Biochem. Biophys. Res. Commun., 113, 967–974.

    Google Scholar 

  • Marion D., Ikura M. and Bax A. (1989a) J. Magn. Reson., 84, 425–430.

    Google Scholar 

  • Marion D., Ikura M., Tschudin R. and Bax A. (1989b) J. Magn. Reson., 85, 393–399.

    Google Scholar 

  • Mazzeo A.R., Delsuc M.A., Kumar A. and Levy G.C. (1989) J. Magn. Reson., 81, 512–519.

    Google Scholar 

  • Meadows R.P., Olejniczak E.T. and Fesik S.W. (1994) J. Biomol. NMR, 4, 79–96.

    Google Scholar 

  • Ni F. and Scheraga H.A. (1986) J. Magn. Reson., 70, 506–511.

    Google Scholar 

  • Ni F., Levy G.C. and Scheraga H.A. (1986) J. Magn. Reson., 66, 385–390.

    Google Scholar 

  • Olejniczak E.T. and Eaton H.L. (1990) J. Magn. Reson., 87, 628–632.

    Google Scholar 

  • Ousterhout J.K. (1994) TCL and the Tk Toolkit, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Palmer A.G., Cavanagh J., Wright P.E. and Rance M. (1991) J. Magn. Reson., 93, 151–170.

    Google Scholar 

  • Parks S.I. and Johannesen R.B. (1976) J. Magn. Reson., 22, 265–267.

    Google Scholar 

  • Pelczer I. and Szalma S. (1991) Chem. Rev., 91, 1507–1524.

    Google Scholar 

  • Redfield A.G. and Kunz S.D. (1975) J. Magn. Reson., 19, 250–254.

    Google Scholar 

  • Schmieder P., Stern A.S., Wagner G. and Hoch J.C. (1994) J. Biomol. NMR, 4, 483–490.

    Google Scholar 

  • Sibisi S. (1983) Nature, 301, 134–136.

    Google Scholar 

  • Skilling J. and Bryan R.K. (1984) Mon. Not. R. Astr. Soc., 211, 111–124.

    Google Scholar 

  • States D.J., Haberkorn R.A. and Ruben D.J. (1982) J. Magn. Reson., 48, 286–292.

    Google Scholar 

  • Stephenson M. (1988) Prog. NMR Spectrosc., 20, 515–626.

    Google Scholar 

  • Stevens W.R. (1992) Advanced Programming in the UNIX Environment, Addison-Wesley, Reading, MA, pp. 428–434.

    Google Scholar 

  • Wu N.L. (1984) Astron. Astrophys., 139, 555–557.

    Google Scholar 

  • Zhu G. and Bax A. (1990) J. Magn. Reson., 90, 405–410.

    Google Scholar 

  • Zhu G. and Bax A. (1992a) J. Magn. Reson., 98, 192–199.

    Google Scholar 

  • Zhu G. and Bax A. (1992b) J. Magn. Reson., 100, 202–207.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Delaglio, F., Grzesiek, S., Vuister, G.W. et al. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6, 277–293 (1995). https://doi.org/10.1007/BF00197809

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00197809

Key words

  • Multidimensional NMR
  • Data processing
  • Fourier transformation
  • Linear prediction
  • Maximum entropy
  • UNIX