NMRPipe: A multidimensional spectral processing system based on UNIX pipes

Summary

The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks.

This is a preview of subscription content, access via your institution.

Abbreviations

1D, 2D, 3D:

one-, two-, three-dimensional

nD:

multidimensional

CPU:

central processing unit

FID:

free induction decay

I/O:

input/output

LP:

linear prediction

MEM:

maximum entropy method

Mb:

megabyte

NOE:

nuclear Overhauser effect

References

  1. Barkhuijsen H., De Beer R., Bovée W.M.M.J. and VanOrmondt D. (1985) J. Magn. Reson., 61, 465–481.

    Google Scholar 

  2. Barkhuijsen H., DeBeer R. and VanOrmondt D. (1987) J. Magn. Reson., 73, 553–557.

    Google Scholar 

  3. Bax A. and Grzesiek S. (1993) Acc. Chem. Res., 26, 131–138.

    Google Scholar 

  4. Callaghan P.T., MacKay A.L., Pauls K.P., Soderman O. and Bloom M. (1984) J. Magn. Reson., 56, 101–109.

    Google Scholar 

  5. Cavanagh J., Palmer A.G., Wright P.E. and Rance M. (1991) J. Magn. Reson., 91, 429–436.

    Google Scholar 

  6. Delsuc M.A., Ni F. and Levy G.C. (1987) J. Magn. Reson., 73, 548–552.

    Google Scholar 

  7. Delsuc M.A. (1989) Maximum Entropy and Bayesian Methods, Kluwer, Amsterdam.

    Google Scholar 

  8. Friedrichs M.S. (1995) J. Biomol. NMR, 5, 147–153.

    Google Scholar 

  9. Garrett D.S., Powers R., Gronenborn A.M. and Clore G.M. (1991) J. Magn. Reson., 94, 214–220.

    Google Scholar 

  10. Gull S.F. and Daniell G.J. (1978) Nature, 272, 686–690.

    Google Scholar 

  11. Güntert P., Doetsch V., Wider G. and Wüthrich K. (1992) J. Biomol. NMR, 2, 619–629.

    Google Scholar 

  12. Heller D. and VanRaalte T. (1993) XView Programming Manual, O'Reilly and Associates, Inc., Sebastopol, CA.

    Google Scholar 

  13. Hoch J.C. (1985) Rowland Institute for Science Technical Memorandum RIS-18t, Rowland Institute, Cambridge, MA.

    Google Scholar 

  14. Hoch J.C. (1989) Methods Enzymol., 176, 216–241.

    CAS  Google Scholar 

  15. Hoch J.C., Stern A.S., Donoho D.L. and Johnstone I.M. (1990) J. Magn. Reson., 86, 236–246.

    Google Scholar 

  16. Hore P.J. (1985) J. Magn. Reson., 62, 561–567.

    Google Scholar 

  17. Johnson B. and Blevins R.A. (1994) J. Biomol. NMR, 4, 603–614.

    Google Scholar 

  18. Johnson S. (1986) In UNIX Programmers Manual: Supplementary Documents 1, University of California, Berkeley, CA.

    Google Scholar 

  19. Kauppinen J. and Saario E.K. (1993) Appl. Spectrosc., 47, 1123–1127.

    CAS  PubMed  Google Scholar 

  20. Kay L.E., Marion D. and Bax A. (1989) J. Magn. Reson., 84, 72–84.

    Google Scholar 

  21. Kay L.E., Ikura M., Zhu G. and Bax A. (1991) J. Magn. Reson., 91, 422–428.

    Google Scholar 

  22. Kay L.E., Keifer P. and Saarinen T. (1992) J. Am. Chem. Soc., 114, 10663–10666.

    Google Scholar 

  23. Kernighan B.W. and Pike R. (1984) The UNIX Programming Environment, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  24. Kernighan B.W. and Ritchie D.M. (1988) The C Programming Language, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  25. Kjaer M., Andersen K.V. and Poulsen F.M. (1994) Methods Enzymol., 239, 288–307.

    Google Scholar 

  26. Kraulis P.J. (1989) J. Magn. Reson., 84, 627–633.

    Google Scholar 

  27. Kraulis P.J., Domaille P.J., Campbell-Burk S.L., VanAken T. and Laue E.D. (1994) Biochemistry, 33, 3515–3531.

    Google Scholar 

  28. Kumaresan R. and Tufts D.W. (1982) IEEE Trans. Acoust. Speech Signal Process. 30, 833–840.

    Google Scholar 

  29. Laue E.D., Skilling J. and Staunton J. (1985a) J. Magn. Reson., 63, 418–424.

    Google Scholar 

  30. Laue E.D., Skilling J., Staunton J., Sibisi S. and Brereton R. (1985b) J. Magn. Reson., 62, 437–452.

    Google Scholar 

  31. Laue E.D., Mayger M.R., Skilling J. and Staunton J. (1986) J. Magn. Reson., 68, 14–29.

    Google Scholar 

  32. Levy G.C., Delaglio F., Macur A. and Begemann J. (1986) Comput. Enhanced Spectrosc., 3, 1–12.

    Google Scholar 

  33. Marion D. and Wüthrich K. (1983) Biochem. Biophys. Res. Commun., 113, 967–974.

    Google Scholar 

  34. Marion D., Ikura M. and Bax A. (1989a) J. Magn. Reson., 84, 425–430.

    Google Scholar 

  35. Marion D., Ikura M., Tschudin R. and Bax A. (1989b) J. Magn. Reson., 85, 393–399.

    Google Scholar 

  36. Mazzeo A.R., Delsuc M.A., Kumar A. and Levy G.C. (1989) J. Magn. Reson., 81, 512–519.

    Google Scholar 

  37. Meadows R.P., Olejniczak E.T. and Fesik S.W. (1994) J. Biomol. NMR, 4, 79–96.

    Google Scholar 

  38. Ni F. and Scheraga H.A. (1986) J. Magn. Reson., 70, 506–511.

    Google Scholar 

  39. Ni F., Levy G.C. and Scheraga H.A. (1986) J. Magn. Reson., 66, 385–390.

    Google Scholar 

  40. Olejniczak E.T. and Eaton H.L. (1990) J. Magn. Reson., 87, 628–632.

    Google Scholar 

  41. Ousterhout J.K. (1994) TCL and the Tk Toolkit, Addison-Wesley, Reading, MA.

    Google Scholar 

  42. Palmer A.G., Cavanagh J., Wright P.E. and Rance M. (1991) J. Magn. Reson., 93, 151–170.

    Google Scholar 

  43. Parks S.I. and Johannesen R.B. (1976) J. Magn. Reson., 22, 265–267.

    Google Scholar 

  44. Pelczer I. and Szalma S. (1991) Chem. Rev., 91, 1507–1524.

    Google Scholar 

  45. Redfield A.G. and Kunz S.D. (1975) J. Magn. Reson., 19, 250–254.

    Google Scholar 

  46. Schmieder P., Stern A.S., Wagner G. and Hoch J.C. (1994) J. Biomol. NMR, 4, 483–490.

    Google Scholar 

  47. Sibisi S. (1983) Nature, 301, 134–136.

    Google Scholar 

  48. Skilling J. and Bryan R.K. (1984) Mon. Not. R. Astr. Soc., 211, 111–124.

    Google Scholar 

  49. States D.J., Haberkorn R.A. and Ruben D.J. (1982) J. Magn. Reson., 48, 286–292.

    Google Scholar 

  50. Stephenson M. (1988) Prog. NMR Spectrosc., 20, 515–626.

    Google Scholar 

  51. Stevens W.R. (1992) Advanced Programming in the UNIX Environment, Addison-Wesley, Reading, MA, pp. 428–434.

    Google Scholar 

  52. Wu N.L. (1984) Astron. Astrophys., 139, 555–557.

    Google Scholar 

  53. Zhu G. and Bax A. (1990) J. Magn. Reson., 90, 405–410.

    Google Scholar 

  54. Zhu G. and Bax A. (1992a) J. Magn. Reson., 98, 192–199.

    Google Scholar 

  55. Zhu G. and Bax A. (1992b) J. Magn. Reson., 100, 202–207.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Frank Delaglio.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Delaglio, F., Grzesiek, S., Vuister, G.W. et al. NMRPipe: A multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6, 277–293 (1995). https://doi.org/10.1007/BF00197809

Download citation

Key words

  • Multidimensional NMR
  • Data processing
  • Fourier transformation
  • Linear prediction
  • Maximum entropy
  • UNIX