Journal of Biomolecular NMR

, Volume 6, Issue 3, pp 277–293 | Cite as

NMRPipe: A multidimensional spectral processing system based on UNIX pipes

  • Frank Delaglio
  • Stephan Grzesiek
  • Geerten W. Vuister
  • Guang Zhu
  • John Pfeifer
  • Ad Bax
Research Paper


The NMRPipe system is a UNIX software environment of processing, graphics, and analysis tools designed to meet current routine and research-oriented multidimensional processing requirements, and to anticipate and accommodate future demands and developments. The system is based on UNIX pipes, which allow programs running simultaneously to exchange streams of data under user control. In an NMRPipe processing scheme, a stream of spectral data flows through a pipeline of processing programs, each of which performs one component of the overall scheme, such as Fourier transformation or linear prediction. Complete multidimensional processing schemes are constructed as simple UNIX shell scripts. The processing modules themselves maintain and exploit accurate records of data sizes, detection modes, and calibration information in all dimensions, so that schemes can be constructed without the need to explicitly define or anticipate data sizes or storage details of real and imaginary channels during processing. The asynchronous pipeline scheme provides other substantial advantages, including high flexibility, favorable processing speeds, choice of both all-in-memory and disk-bound processing, easy adaptation to different data formats, simpler software development and maintenance, and the ability to distribute processing tasks on multi-CPU computers and computer networks.

Key words

Multidimensional NMR Data processing Fourier transformation Linear prediction Maximum entropy UNIX 


1D, 2D, 3D

one-, two-, three-dimensional




central processing unit


free induction decay




linear prediction


maximum entropy method




nuclear Overhauser effect


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barkhuijsen H., De Beer R., Bovée W.M.M.J. and VanOrmondt D. (1985) J. Magn. Reson., 61, 465–481.Google Scholar
  2. Barkhuijsen H., DeBeer R. and VanOrmondt D. (1987) J. Magn. Reson., 73, 553–557.Google Scholar
  3. Bax A. and Grzesiek S. (1993) Acc. Chem. Res., 26, 131–138.Google Scholar
  4. Callaghan P.T., MacKay A.L., Pauls K.P., Soderman O. and Bloom M. (1984) J. Magn. Reson., 56, 101–109.Google Scholar
  5. Cavanagh J., Palmer A.G., Wright P.E. and Rance M. (1991) J. Magn. Reson., 91, 429–436.Google Scholar
  6. Delsuc M.A., Ni F. and Levy G.C. (1987) J. Magn. Reson., 73, 548–552.Google Scholar
  7. Delsuc M.A. (1989) Maximum Entropy and Bayesian Methods, Kluwer, Amsterdam.Google Scholar
  8. Friedrichs M.S. (1995) J. Biomol. NMR, 5, 147–153.Google Scholar
  9. Garrett D.S., Powers R., Gronenborn A.M. and Clore G.M. (1991) J. Magn. Reson., 94, 214–220.Google Scholar
  10. Gull S.F. and Daniell G.J. (1978) Nature, 272, 686–690.Google Scholar
  11. Güntert P., Doetsch V., Wider G. and Wüthrich K. (1992) J. Biomol. NMR, 2, 619–629.Google Scholar
  12. Heller D. and VanRaalte T. (1993) XView Programming Manual, O'Reilly and Associates, Inc., Sebastopol, CA.Google Scholar
  13. Hoch J.C. (1985) Rowland Institute for Science Technical Memorandum RIS-18t, Rowland Institute, Cambridge, MA.Google Scholar
  14. Hoch J.C. (1989) Methods Enzymol., 176, 216–241.Google Scholar
  15. Hoch J.C., Stern A.S., Donoho D.L. and Johnstone I.M. (1990) J. Magn. Reson., 86, 236–246.Google Scholar
  16. Hore P.J. (1985) J. Magn. Reson., 62, 561–567.Google Scholar
  17. Johnson B. and Blevins R.A. (1994) J. Biomol. NMR, 4, 603–614.Google Scholar
  18. Johnson S. (1986) In UNIX Programmers Manual: Supplementary Documents 1, University of California, Berkeley, CA.Google Scholar
  19. Kauppinen J. and Saario E.K. (1993) Appl. Spectrosc., 47, 1123–1127.PubMedGoogle Scholar
  20. Kay L.E., Marion D. and Bax A. (1989) J. Magn. Reson., 84, 72–84.Google Scholar
  21. Kay L.E., Ikura M., Zhu G. and Bax A. (1991) J. Magn. Reson., 91, 422–428.Google Scholar
  22. Kay L.E., Keifer P. and Saarinen T. (1992) J. Am. Chem. Soc., 114, 10663–10666.Google Scholar
  23. Kernighan B.W. and Pike R. (1984) The UNIX Programming Environment, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  24. Kernighan B.W. and Ritchie D.M. (1988) The C Programming Language, Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  25. Kjaer M., Andersen K.V. and Poulsen F.M. (1994) Methods Enzymol., 239, 288–307.Google Scholar
  26. Kraulis P.J. (1989) J. Magn. Reson., 84, 627–633.Google Scholar
  27. Kraulis P.J., Domaille P.J., Campbell-Burk S.L., VanAken T. and Laue E.D. (1994) Biochemistry, 33, 3515–3531.Google Scholar
  28. Kumaresan R. and Tufts D.W. (1982) IEEE Trans. Acoust. Speech Signal Process. 30, 833–840.Google Scholar
  29. Laue E.D., Skilling J. and Staunton J. (1985a) J. Magn. Reson., 63, 418–424.Google Scholar
  30. Laue E.D., Skilling J., Staunton J., Sibisi S. and Brereton R. (1985b) J. Magn. Reson., 62, 437–452.Google Scholar
  31. Laue E.D., Mayger M.R., Skilling J. and Staunton J. (1986) J. Magn. Reson., 68, 14–29.Google Scholar
  32. Levy G.C., Delaglio F., Macur A. and Begemann J. (1986) Comput. Enhanced Spectrosc., 3, 1–12.Google Scholar
  33. Marion D. and Wüthrich K. (1983) Biochem. Biophys. Res. Commun., 113, 967–974.Google Scholar
  34. Marion D., Ikura M. and Bax A. (1989a) J. Magn. Reson., 84, 425–430.Google Scholar
  35. Marion D., Ikura M., Tschudin R. and Bax A. (1989b) J. Magn. Reson., 85, 393–399.Google Scholar
  36. Mazzeo A.R., Delsuc M.A., Kumar A. and Levy G.C. (1989) J. Magn. Reson., 81, 512–519.Google Scholar
  37. Meadows R.P., Olejniczak E.T. and Fesik S.W. (1994) J. Biomol. NMR, 4, 79–96.Google Scholar
  38. Ni F. and Scheraga H.A. (1986) J. Magn. Reson., 70, 506–511.Google Scholar
  39. Ni F., Levy G.C. and Scheraga H.A. (1986) J. Magn. Reson., 66, 385–390.Google Scholar
  40. Olejniczak E.T. and Eaton H.L. (1990) J. Magn. Reson., 87, 628–632.Google Scholar
  41. Ousterhout J.K. (1994) TCL and the Tk Toolkit, Addison-Wesley, Reading, MA.Google Scholar
  42. Palmer A.G., Cavanagh J., Wright P.E. and Rance M. (1991) J. Magn. Reson., 93, 151–170.Google Scholar
  43. Parks S.I. and Johannesen R.B. (1976) J. Magn. Reson., 22, 265–267.Google Scholar
  44. Pelczer I. and Szalma S. (1991) Chem. Rev., 91, 1507–1524.Google Scholar
  45. Redfield A.G. and Kunz S.D. (1975) J. Magn. Reson., 19, 250–254.Google Scholar
  46. Schmieder P., Stern A.S., Wagner G. and Hoch J.C. (1994) J. Biomol. NMR, 4, 483–490.Google Scholar
  47. Sibisi S. (1983) Nature, 301, 134–136.Google Scholar
  48. Skilling J. and Bryan R.K. (1984) Mon. Not. R. Astr. Soc., 211, 111–124.Google Scholar
  49. States D.J., Haberkorn R.A. and Ruben D.J. (1982) J. Magn. Reson., 48, 286–292.Google Scholar
  50. Stephenson M. (1988) Prog. NMR Spectrosc., 20, 515–626.Google Scholar
  51. Stevens W.R. (1992) Advanced Programming in the UNIX Environment, Addison-Wesley, Reading, MA, pp. 428–434.Google Scholar
  52. Wu N.L. (1984) Astron. Astrophys., 139, 555–557.Google Scholar
  53. Zhu G. and Bax A. (1990) J. Magn. Reson., 90, 405–410.Google Scholar
  54. Zhu G. and Bax A. (1992a) J. Magn. Reson., 98, 192–199.Google Scholar
  55. Zhu G. and Bax A. (1992b) J. Magn. Reson., 100, 202–207.Google Scholar

Copyright information

© ESCOM Science Publishers B.V. 1995

Authors and Affiliations

  • Frank Delaglio
    • 1
  • Stephan Grzesiek
    • 1
  • Geerten W. Vuister
    • 2
  • Guang Zhu
    • 3
  • John Pfeifer
    • 4
  • Ad Bax
    • 1
  1. 1.Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA
  2. 2.Bijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
  3. 3.Department of BiochemistryThe Hong Kong University of Science and TechnologyKowloonHong Kong
  4. 4.Division of Computer Research and TechnologyNational Institutes of HealthBethesdaUSA

Personalised recommendations