Skip to main content
Log in

Molecular cloning and structural analysis of the phosphate translocator from pea chloroplasts and its comparison to the spinach phosphate translocator

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Using an 5′-AvaII fragment of the spinach (Spinacia oleracea L.) phosphate translocator cDNA as a probe for a hybridization screening of a pea (Pisum sativum L.) cDNA library we have cloned and sequenced a cDNA clone coding for the phosphate translocator precursor protein from pea chloroplasts. The full-length cDNA clone comprises 42 base pairs (bp) at the 5′-non-coding region, a 1206-bp coding region corresponding to a polypeptide of 402 amino-acid residues (relative molecular mass 43 671) and 244 bp at the non-coding 3′-region. Determination of the N-terminal sequence of the phosphate translocator from both pea and spinach chloroplasts revealed that the transit peptides consist of 72 and 80 amino-acid residues, respectively. These transit peptides are different from those of other chloroplastic transit peptides in that they both contain an amphiphilic α-helix which is located either in close proximity to the processing site in pea or at the N-terminus in spinach. The mature proteins from pea and spinach both contain about 87% identical amino-acid residues and about seven putative membrane-spanning α-helices. Some of these α-helices have an amphiphilic character and might serve to form a hydrophilic translocation channel through the membrane. The in-vitro synthesized pea precursor protein is directed to the chloroplast and inserted into the chloroplast envelope membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

bp:

base pairs

kDa:

kilodaltons

Mr :

relative moleculas mass

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  • Abad, M.S., Clark, S.E., Lamppa, G.K. (1989) Properties of a chloroplast enzyme that cleaves the chlorophyll a/b binding precursor protein. Plant Physiol. 90, 117–124

    Google Scholar 

  • Benton, W.D., Davis, R.W. (1977) Screening λgt recombinant clones by hybridization to single plaques in situ. Science 196, 180–182

    Google Scholar 

  • Bonner, W.M., Laskey, R.A. (1974) A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur. J. Biochem. 46, 84–88

    Google Scholar 

  • Capaldi, R.A., Vanderkooi, G. (1972) The low polarity of many membrane proteins. Proc. Natl. Acad. Sci. USA 69, 930–93

    Google Scholar 

  • Chirico, W.J., Waters, M.G., Blobel, G. (1988) 70 K heat shock proteins stimulate protein translocation into microsomes. Nature 332, 805–810

    Google Scholar 

  • Cline, K., Werner-Washburne, M., Lubben, T.H., Keegstra, K. (1985) Precursors to two nuclear-encoded chloroplast proteins bind to the outer envelope before being imported into chloroplasts. J. Biol. Chem. 260, 3691–3696

    Google Scholar 

  • della-Cioppa, G., Kishore, G.M. (1988). Import of a precursor protein into chloroplasts is inhibited by the herbicide glyphosate. EMBO J. 7, 1299–1305

    Google Scholar 

  • Deshaies, R.J., Koch, B.D., Werner-Washburne, M., Criag, E.A., Schekman, R. (1988) A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature 332, 800–805

    Google Scholar 

  • Douce, R., Holtz, B.R., Benson, A.A. (1973) Isolation and properties of the envelope of spinach chloroplasts. J. Biol. Chem. 248, 7215–7222

    Google Scholar 

  • Dreses-Werringloer, U., Fischer, K., Wachter, E., Link, T.A., Flügge, U.I. (1990) cDNA sequence and deduced amino acid sequence of the precursor of the 37 kDa inner envelope membrane polypeptide from spinach chloroplasts: its transit peptide contains an amphiphilic α-helix as the only detectable structural element. Eur. J. Biochem. in press

  • Dunn, P.P.J., Packman, L.C., Pappin, D., Gray, J.C. (1988) N-terminal amino acid sequence analysis of the subunits of pea photosystem I. FEBS Lett. 228, 157–161

    Google Scholar 

  • Flügge, U.-I. (1982) Biogenesis of the chloroplast phosphate translocator. FEBS Lett. 140, 273–276

    Google Scholar 

  • Flügge, U.I. (1985) Hydrodynamic properties of the Triton X-100-solubilized chloroplast phospahte translocator. Biochim. Biophys. Acta 815, 299–305

    Google Scholar 

  • Flügge, U.I. (1990) Import of proteins into chloroplasts. J. Cell Sci. 96, 351–354

    Google Scholar 

  • Flügge, U.-I., Heldt, H.W. (1979) Phosphate translocator in chloroplasts: Identification of the functional protein and characterization of its binding site. In: Quagliariello, E., Palmieri, F., Klingenberg, E.M., eds. Function and molecular aspects of biomembrane transport, pp. 373–382 Elsevier/North Holland Biomedical Press, Amsterdam Netherlands

    Google Scholar 

  • Flügge, U.I., Heldt, H.W. (1984) The phosphate-triose phosphate-phosphoglycerate translocator of the chloroplast. Trends Biochem. Sci. 9, 530–533

    Google Scholar 

  • Flügge, U.I., Hinz, G. (1986) Energy dependence of protein translocation into chlorplasts. Eur. J. Biochem. 160, 563–570

    Google Scholar 

  • Flügge, U.-I., Wessel, D. (1984) Cell-free synthesis of putative precursors for envelope membrane polypeptides of spinach chloroplasts. FEBS Lett. 168, 255–259

    Google Scholar 

  • Flügge, U.I., Fischer, K., Gross, A., Sebald, W., Lottspeich, F., Eckerskorn, C. (1989) The triose phosphate-3-phosphoglycerate-phosphate translocator from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts. EMBO J. 8, 39–46

    Google Scholar 

  • Franzén, L.-G., Rochaix, J.-D., von Heijne, G. (1990) Chloroplast transit peptides from the green alga Chlamydomonas reinhardtii share features with both mitochondrial and higher plant chloroplast presequences. FEBS Lett. 260, 165–168

    Google Scholar 

  • Gantt, J.S., Key, J.L. (1986) Isolation of nuclear encoded plastid ribosomal protein cDNAs. Mol. Gen. Genet. 202, 186–193

    Google Scholar 

  • Gavel, Y., von Heijne, G. (1990) A conserved cleavage-site motif in chloroplast transit peptides. FEbS Lett. 261, 455–458

    Google Scholar 

  • Grossman, A.W., Bartlett, S., Chua, N.-H. (1980) Energy-dependent uptake of cytoplasmically synthesized polypeptides by chloroplasts. Nature 285, 625–628

    Google Scholar 

  • Hagemann, J., Robinson, C., Smeekens, S., Weisbeek, P. (1986) A thylakoid processing protease is required for complete maturation of the lumen protein plastocyanin. Nature 324, 567–569

    Google Scholar 

  • Hartl, F.-U., Pfanner, N., Nicholson, D.W., Neupert, W. (1989) Mitochondrial protein import. Biochim. Biophys. Acta 988, 1–45

    Google Scholar 

  • Henikoff, S. (1987) Unidirectional digestion with exonuclease III in DNA sequence analysis. Methods Enzymol. 155, 156–165

    Google Scholar 

  • Hinz, G., Flügge, U.I. (1988) Phosphorylation of a 51 kDa envelope membrane polypeptide involved in protein translocation into chloroplasts. Eur. J. Biochem. 175, 649–659

    Google Scholar 

  • Karlin-Neumann, G.A., Tobin, E.M. (1986) Transit peptides of nuclear-encoded chloroplast proteins share a common amino acid frame work. EMBO J. 5, 9–13

    Google Scholar 

  • Keegstra, K., Olsen, L.J., Theg, S.M. (1989) Chloroplastic precursors and their transport across the envelope membranes. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 471–501

    Google Scholar 

  • Kyte, J., Doolittle, R.F. (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132

    Google Scholar 

  • Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685

    PubMed  Google Scholar 

  • Lecker, S., Lill, R., Ziegelhoffer, T., Georgopoulos, C., Bassford, P.J., Jr., Kumamoto, C.A., Wickner, W. (1989) Three pure chaperone proteins of Escherichia coli — SecB, trigger factor and GroEL — form soluble complexes with precursor proteins in vitro. EMBO J. 8, 2703–2709

    Google Scholar 

  • Lubben, T.H., Keegstra, K. (1986) Efficient in vitro import of a cytosolic heat shock protein into pea chloroplasts. Proc. Natl. Acad. Sci. USA 83, 5502–5506

    Google Scholar 

  • Lubben, T.H., Theg, S.M., Keegstra, K. (1988) Transport of proteins into chloroplasts. Photosynth. Res. 17, 173–194

    Google Scholar 

  • Pain, D., Blobel, G. (1987) Protein import into chloroplasts requires a chloroplast ATPase. Proc. Natl. Acad. Sci. USA 84, 3288–3292

    Google Scholar 

  • Sanger, F., Nicklen, S., Coulson, A.-R. (1977) DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74, 5463–5467

    Google Scholar 

  • Schiffer, M., Edmundson, A.B. (1967) Use of helical wheels to represent the structures of proteins and to identify segments with helical potentials. Biophys. J. 7, 121–135

    Google Scholar 

  • Schindler, C., Hracky, R., Soll, J. (1987) Protein transport into chloroplasts: ATP is a prerequisite. Z. Naturforsch. 42c, 103–108

    Google Scholar 

  • Schmidt, P.E., Mishkind, M.L. (1986) The transport of proteins into chloroplasts. Annu. Rev. Biochem. 55, 879–912

    Google Scholar 

  • Schreier, P.H., Senor, E.A., Schell, J., Bohnert, H.J. (1985) The use of nuclear-encoded sequences to direct the light-regulated synthesis and transport of a foreign protein into plant chloroplasts. EMBO J. 4, 25–32

    Google Scholar 

  • Smeekens, S., Weisbeek, P. (1988) Protein transport towards the thylakoid lumen: post-translational translocation in tandem. Photosynth. Res. 16, 177–186

    Google Scholar 

  • Smeekens, S., Bauerle, C., Hagemann, J., Keegstra, K., Weisbeek, P. (1986) The role of the transit peptide in the routing of precursors toward different chloroplast compartments. Cell 46, 365–375

    Google Scholar 

  • Theg, S.M., Bauerle, C., Olsen, L.J., Selman, B.R., Keegstra, K. (1989) Internal ATP is the only energy requirement for the translocation of precursor proteins across chloroplastic membranes. J. Biol. Chem. 264, 6730–6736

    Google Scholar 

  • van den Broeck, G., Timko, P.M., Kausch, A.P., Cashmore, A.R., van Montagu, M., Herrera-Estrella, L. (1985) Targeting of a foreign protein to chloroplats by fusion to the transit peptide from the small subunit of ribulose 1,5-bisphosphate carboxylase. Nature 313, 358–363

    Google Scholar 

  • von Heijne, G. (1986) Mitochondrial targeting sequences may form amphiphilic helices. EMBO J. 5, 1335–1342

    Google Scholar 

  • von Heijne, G., Steppuhn, J., Herrmann, R.G. (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur. J. Biochem. 180, 535–545

    Google Scholar 

  • Waegemann, K., Paulsen, H., Soll, J. (1990) Translocation of proteins into isolated chloroplasts requires cytosolic factors to obtain import competence. FEBS Lett. 261, 89–92

    Google Scholar 

  • Webber, A.N., Packman, L.C., Gray, J.C. (1989) A 10 kDa polypeptide associated with the oxygen-evolving complex of photosystem II has a putative C-terminal non-cleavable thylakoid transfer domain. FEBS Lett. 242, 435–438

    Google Scholar 

  • Zimmermann, R., Sagstetter, M., Lewis, M.J., Pelham, H.R.B. (1988) Seventy-kilodalton heat shock proteins and an additional component from reticulocyte lysate stimulate import of M13 procoat protein into microsomes. EMBO J. 7, 2875–2880

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We wish to thank Dr D. Pappin and R. Jakes (AFRC Sequencing Laboratory, Department of Biochemistry, University of Leeds, UK) for performing the N-terminal sequence determinations and are greatful to Dr J. S. Gantt (Botany Department, University of Georgia, Athens, USA) for a pea leaf cDNA library and to Professor J. C. Gray (University of Cambridge, Department of Botany, Cambridge, UK) for helpful discussions. This work was supported by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the Science and Engineering Research Council and the Royal Society. D.L.W. was the recipient of the Royal Society Rosenheim research fellowship and K.F. was supported by a fellowship from the Studienstiftung des deutschen Volkes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willey, D.L., Fischer, K., Wachter, E. et al. Molecular cloning and structural analysis of the phosphate translocator from pea chloroplasts and its comparison to the spinach phosphate translocator. Planta 183, 451–461 (1991). https://doi.org/10.1007/BF00197745

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00197745

Key words

Navigation