Skip to main content
Log in

Sterol overproduction is the biochemical basis of resistance to a triazole in calli from a tobacco mutant

  • Published:
Planta Aims and scope Submit manuscript

Abstract

Sterol overproduction is shown to be the biochemical basis of resistance to the triazole LAB 170250F (2-(4-chlorophenyl)-3-phenyl-1-(1H-1,2,4-triazol-1-yl)-2,3-oxidopropane), an inhibitor of cytochrome P450-dependent-obtusifoliol-14α-demethylase, in the tobacco (Nicotiana tabacum L. cv. Xanthi) mutant LAB 1-4. Genetic analysis at the callus level indicates that the resistance and the biochemical phenotypes co-segregate during meiotic recombination and therefore result most probably from the same mutation. Analysis of the intracellular distribution of sterols shows that in LAB 1-4 calli containing tenfold the sterol amount of the wild type, the overproduced metabolites, mainly obtusifoliol, are esterified by fatty acids and stored in hyaloplasmic lipid droplets. Thus, the mutant calli maintain a concentration of free sterols in cell membranes, mainly end-products of the sterol-biosynthesis pathway, which corresponds to physiological requirements, whereas the level of free sterols in the wild-type calli treated with the triazole is too low to ensure viability. We also show that sterol overproduction confers resistance to other phytotoxic sterolbiosynthesis inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

14DM:

cytochrome P-450-dependent obtusifoliol 14α-demethylase

FAMES:

fatty acid methyl-esters

HMGR:

3-hydroxy-3-methylglutaryl-coenzyme A reductase

SBI:

Sterol biosynthesis inhibitor

References

  • Bach, T.J. (1986) Hydroxymethylglutaryl-CoA reductase, a key enzyme in phytosterol synthesis? Lipids 21, 82–88

    Google Scholar 

  • Benveniste, P. (1986) Sterol biosynthesis. Annu. Rev. Plant Physiol. 37, 275–308

    Google Scholar 

  • Benveniste, P., Rahier, A. (1992) Target sites of sterol biosynthesis inhibitors in plants. In: Target sites of fungicide action, pp. 207–225, Köller W., ed. CRC Press, Boca Raton

    Google Scholar 

  • Bloch, K.E. (1983) Sterol structure and membrane function. CRC Crit. Rev. Biochem. 14, 47–91

    Google Scholar 

  • Burden, R.S., James, C.S., Cooke, D.T., Anderson, N.H. (1987) C-14 demethylation in phytosterol biosynthesis. A new target site for herbicidal activity. Proc. Br. Crop. Prot. Confer. Weeds 3B-4, 171–178

    Google Scholar 

  • Burden, R.S., Cooke, D.T., Carter, G.A. (1989) Inhibitors of sterol biosynthesis and growth in plants and fungi. Phytochemistry 28, 1791–1804

    Google Scholar 

  • Costet-Corio, M.F., Benveniste, P. (1988) Sterol metabolism in wheat treated by N-substituted morpholines. Pestic. Sci. 22, 343–357

    Google Scholar 

  • Dahl, C.E., Dahl, J.S., Bloch, K.E. (1980) Effects of cycloartenol and lanosterol on artificial and natural membranes. Biochem. Biophys. Res. Comm. 92, 221–228

    Google Scholar 

  • Dyas, L., Prescott, M.C., Evershed, R.P., Goad, L.J. (1991) Sterylesters in a cell suspension culture of celery (Apium graveolens). Lipids 26, 536–541

    Google Scholar 

  • Goldstein, J.L., Brown, M.S. (1990) Regulation of the mevalonate pathway. Nature 343, 425–430

    Article  CAS  PubMed  Google Scholar 

  • Gondet, L., Weber, T., Maillot-Vernier, P., Benveniste, P., Bach, T.J. (1992) Regulatory role of microsomal 3-hydroxy-3-methylglutaryl-coenzyme A reductase in a tobacco mutant that overproduces sterols. Biochem. Biophys. Res. Comm. 186, 888–893

    Google Scholar 

  • Hartmann, M.A., Benveniste, P. (1987) Plant membrane sterols: Isolation, identification and biosynthesis. Methods Enzymol. 148, 632–650

    Google Scholar 

  • Haughan, P.A., Lenton, J.R., Goad, L.J. (1988) Sterol requirements and paclobutrazol inhibition of a celery cell culture. Phytochemistry 27, 2491–2500

    Google Scholar 

  • Hays, P.R., Parks, L.W., Pierce, H.D., Oehlschlager, A.C. (1977) Accumulation of ergosta-8,14-dien-3β-ol by Saccharomyces cerevisiae cultured with an azasterol antimycotic agent. Lipids 12, 666–668

    Google Scholar 

  • Hosokawa, G., Patterson, G.W., Lusby, W.R. (1984) Effects of triarimol, tridemorph and triparanol on sterol biosynthesis in carrot, tobacco and soybean suspension cultures. Lipids 19, 449–456

    Google Scholar 

  • Maillot-Vernier, P., Schaller, H., Benveniste, P., Belliard, G. (1989) Biochemical characterization of a sterol mutant plant regenerated from a tobacco callus resistant to a triazole cytochrome-P-450 obtusifoliol-14-demethylase inhibitor. Biochem. Biophys. Res. Comm. 165, 125–130

    Google Scholar 

  • Maillot-Vernier, P., Schaller, H., Benveniste, P., Belliard, G. (1990) In vitro selection of calli resistant to a triazole cytochrome P450-obtusifoliol-14 demethylase inhibitor from protoplasts of Nicotiana tabacum L. cv. Xanthi. Plant Physiol. 93, 1190–1195

    Google Scholar 

  • Maillot-Vernier, P., Gondet, L., Schaller, H., Benveniste, P., Belliard, G. (1991) Genetic study and further biochemical characterization of a tobacco mutant that overproduces sterols. Mol. Gen. Genet. 231, 33–40

    Google Scholar 

  • Mercer, E.I., (1991) Sterol biosynthesis inhibitors: Their current status and modes of action. Lipids 26, 584–597

    Google Scholar 

  • Milon, A., Nakatani, Y., Kintzinger, J.P., Ourisson, G. (1989) The conformation of cycloartenol investigated by NMR and molecular mechanism. Helv. Chim. Acta. 72, 1–13

    Google Scholar 

  • Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473–479

    Google Scholar 

  • Nes, W.R. (1977) The biochemistry of plant sterols. Adv. Lipid Res. 15, 233–324

    Google Scholar 

  • Rahier, A., Schmitt, P., Huss, B., Benveniste, P., Pommer, E.H. (1986) Chemical structure-activity relationships of the inhibition of sterol biosynthesis by N-substituted morpholines in higher plants. Pestic. Biochem. Physiol. 25, 112–124

    Google Scholar 

  • Rahier, A., Benveniste, P. (1989) Mass spectral identification of phytosterols. In: Analysis of sterols and other significant steroids, pp. 223–250, Nes. W.D. Parish., E. eds. Academic Press, New York

    Google Scholar 

  • Salmon, F., Taton, M., Benveniste, P., Rahier, A. (1992) Plant sterol biosynthesis: novel potent and selective inhibitors of cytochrome P450-dependent obtusifoliol 14α-methyl demethylase. Arch. Biochem. Biophys. 297, 123–131

    Google Scholar 

  • Schaller, H., Maillot-Vernier, P., Benveniste, P., Belliard, G. (1991) Sterol composition of tobacco calli selected for resistance to fenpropimorph. Phytochemistry 30, 2547–2554

    Google Scholar 

  • Schaller, H., Maillot-Vernier, P., Belliard, G., Benveniste, P. (1992) Increased sterol biosynthesis in tobacco calli resistant to a triazole herbicide which inhibits demethylation of 14α-methyl sterols. Planta 187, 315–321

    Google Scholar 

  • Schmitt, P., Scheid, F., Benveniste, P. (1980) Accumulation of Δ8,14-sterols in suspension cultures of bramble cells cultured with an azasterol antimycotic agent (A25822B). Phytochemistry 19, 525–530

    Google Scholar 

  • Schmitt, P., Benveniste, P., Leroux, P. (1981) Accumulation of 9β,19-cyclopropyl sterols in suspension cultures of bramble cells cultured with tridemorph. Phytochemistry 20, 2153–2159

    Google Scholar 

  • Schuler, I., Milon, A., Nakatani, Y., Ourisson, G., Albrecht, A.M., Benveniste, P., Hartmann, M.A. (1991) Differential effects of plant sterols on water permeability and on acyl chain ordering of soybeam phosphatidylcholine bilayers. Proc. Natl. Acad. Sci. USA 88, 6926–6930

    Google Scholar 

  • Streit, L., Moreau, M., Gaudin, J., Ebert, E., Vanden Bossche, H. (1991) A novel imidazole carboxylic acid ester is a herbicide inhibiting 14α-methyl-demethylation in plant sterol biosynthesis. Pestic. Biochem. Physiol. 40, 162–168

    Google Scholar 

  • Taton, M., Benveniste, P., Rahier, A. (1987) Comparative study of the inhibition of sterol biosynthesis in Rubus fruticosus suspension cultures and Zea mays seedlings by N-(1,5,9-trimethyldecyl)-4α,10-dimethyl-8-aza-trans-decal-3β-ol and derivatives. Phytochemistry 26, 385–392

    Google Scholar 

  • Taton, M., Ullmann, P., Benveniste, P., Rahier, A. (1988) Interaction of triazole fungicides and plant growth regulators with microsomal cytochrome P-450-dependent obtusifoliol 14α-methyl demethylase. Pestic. Biochem. Physiol. 30, 178–189

    Google Scholar 

  • Taton, M., Benveniste, P., Rahier, A. (1989) Microsomal Δ8,14-sterol-Δ14-reductase in higher plants. Eur. J. Biochem. 185, 605–614

    Google Scholar 

  • Taton, M., Rahier, A. (1991) Properties and structural requirements for substrate specificity of cytochrome P-450-dependent obtusifoliol 14α-demethylase from maize (Zea mays) seedlings. Biochem. J. 277, 483–492

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We are grateful to Professor G. Belliard (Laboratoire de Génétique Végétale, URA 115 CNRS, Bat. 360, 91405 — Orsay, France) for encouraging this work. We thank Dr. C. Leray (Centre de Neurochimie du CNRs, Strasbourg-Cronenbourg, France) for help in FAMES identification. We are grateful to B. Bastian for kindly typing the manuscript. We also thank J. Wyartt for improving the English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaller, H., Gondet, L., Maillot-Vernier, P. et al. Sterol overproduction is the biochemical basis of resistance to a triazole in calli from a tobacco mutant. Planta 194, 295–305 (1994). https://doi.org/10.1007/BF00197528

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00197528

Key words

Navigation