Skip to main content
Log in

New splitting method for wood fracture characterization

  • Originals
  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Summary

A testing procedure with a new and simple specimen shape is presented which is appropriate to characterize fracturing of inhomogeneous and complex materials like wood. With this, the fracture energy of spruce wood is determined in the TL and RL direction. The “size effect”, i.e. influences of specimen dimensions on KIC and Gf (specific fracture energy) are investigated. Stress and deformation distribution in the newly developed specimens are analysed with FE methods. The measured load-displacement curves are approximated by bilinear softening diagrams and FE analysis. Based on these results, it is tried to interpret typical deviations from LEFM's behaviour by mechanisms like microcracking, crack branching or crack tip bridging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aicher, S.; Reinhardt, H. W. 1993: Einfluß der Bauteilgröße in der linearen und nichtlinearen (Holz-) Bruchmechanik. Holz als Rohund Werkstoff 51: 215–220

    Google Scholar 

  • Atluri, S. N.; Kobayashi, A. S. 1979: Application of an assumed displacement hybrid finite element procedure to two dimensional problems in fracture mechanics. AIAA/ASME/SAE 15th Structures, Struct. Dyn. and Mater. Conf., Las Vegas, U.S.A.

  • Barrett 1976: Engng. Fracture Mech. 8: 711–717

    Google Scholar 

  • Barrett, J. D.; Foschi, R. O. 1977: Mode II stress-intensity factors for cracked wood beams 1977. Engng. Fracture Mech. 9: 371–378

    Google Scholar 

  • Bazant, Z. P.; Asce, F. 1984: Size effect in blunt fracture: Concrete, rock metal. J. of Engineering Mechanics 110(4): 518–535

    Google Scholar 

  • Bazant, Z. P.; Pfeiffer, P. A. 1987: Determination of fracture energy from size effect and brittleness number. ACI Materials j., Nov.-Dec.: 463–480

  • Boatright, S. W. J.; Garrett, G. G. 1983: The effect of microstructure and stress state on the fracture behaviour of wood. J. of Materials Sci. 18: 2181–2199

    Google Scholar 

  • Benzley, S. E. 1965: Representation of singularity factor in anisotropic bodies. Int. J. Fracture Mech. 1: 189–203

    Google Scholar 

  • Boström, L. 1986: Analysis of shrinkage cracks in wood by means of fracture mechanics. Div. of Building Materials Lund Institute of Technology, Report TVBM-3O27 Boström, L. 1992: Method for determination of the softening behaviour of wood and the applicability of a nonlinear fracture mechanics model. Universitatis Gothorum, CODEN: LUTVDG/(TVBM-1012)1-132

  • Cramer, S. M.; McDonald, K. A. 1989: Predicting lumber tensile stiffness and strength with local strain angle measurements and failure analysis. Wood and Fiber Sci. 2(4): 393–410

    Google Scholar 

  • Ebewele, R. O.; River, B. H.; Koutsky, J. A. 1979: Tapered double cantilever beam fracture tests of phenolic-wood adhesive joints. Wood and Fiber. 12(1): 40–65

    Google Scholar 

  • Ewing, P.; Williams, J. G. 1979: Thickness and moisture content effect in the fracture toughness of Scots Pine: J. of Materials Science 14: 2959–2966

    Google Scholar 

  • Foschi, R. O.; Barrett, J. D. 1976: Stress intensity factors in anisotropic plates using singular isoparametric elements. Int. J. Numer. Mech. Engng. 10: 1281–1287

    Google Scholar 

  • Hillerborg, A. 1991: Application of the fictious crack model to different types of materials. International J. of Fracture 51: 95–102

    Google Scholar 

  • Hsu, T. C.; Sturman, G. M.; Winter, G. 1962: Microcracking of plain concrete and the shape of the stress-strain curve. ACI Journal Proc., 60(2): 209–222

    Google Scholar 

  • Kollmann, F. 1951 (reprint 1982): Technologie des Holzes, Springer-Verlag, Berlin, Göttingen, Heidelberg, New York

    Google Scholar 

  • Kühne, H.; Fischer, H.; Vodoz, J.; Wagner, T. 1955: Über den Einfluß von Wassergehalt, Raumgewicht, Faserstellung und Jahrringstellungen auf die Festigkeit und Verformbarkeit schweizerischen Fichten-, Tannen-, Lärchen-, Rotbuchenund Eichenholzes. Eidg. Mat.prüf.und Vers.anst. für Industrie, Bauwesen und Gewerbe, Zürich, Bericht Nr. 183, Zürich

    Google Scholar 

  • Murphy, J. F. 1979: Using fracture mechanics to predict failure in notched wood beams. Proc. first internat, conf. on wood fracture, Banff, 1978, Forintek Canada Corp. Vancouver, Canada, 159–173

    Google Scholar 

  • Nomura, N.; Mihashie, H.; Izumi, M. 1991: Properties of fracture process zone and tension softening behaviour of concrete. In: van Mier, J. G. M.; Rots, J. G.; Bakker, A. (Eds.): Fracture processes in concrete, rock and ceramics, pp. 51–60, London: E&F.N. Spon.

    Google Scholar 

  • Petterson, H. 1992: Analysis of fracture propagation, COST 508 workshop on fracture mechanics in wooden materials, Bordeaux, France

  • Petterson, R. O.; Bodig, J. 1983: Prediction of fracture toughness of conifers. Wood and Fiber Sci. 15(4): 302–316

    Google Scholar 

  • Porter, A. W. 1964: On the mechanics of fracture in wood. For. Prod. J. 14(2): 325–331

    Google Scholar 

  • Roelfstra, P. E. 1988: Numerical concrete, Ph.D. thesis, ETRH Lausanne

    Google Scholar 

  • Roelfstra, P. E. 1991: private communication

  • Saouma, V. E.; Sikiotis, E. S. 1986: Stress intensity factors in anisotropic bodies using singular isoparametric elements. Eng. Fract. Mech. 25, 1: 115–121

    Google Scholar 

  • Schniewind, A. P. 1962: Tensile strength perpendicular to grain as a function of moisture content in California Black oak: Forest Products J. 12(5): 249–252

    Google Scholar 

  • Schniewind, A. P. 1989: Concise encyclopedia of wood and wood-based materials, ed. Schniewind A. P., Pergamon, Oxford, p. 77

  • Schniewind, A. P.; Centeno, J. C. 1982: Fracture toughness and duration of load factor I. Six principal systems of crack propagation and the duration factor for cracks propagating parallel to grain. Wood and Fiber 5(2): 152–159

    Google Scholar 

  • Schniewind, A. P.; Ohgama, T.; Aoki, T.; Yamada, T. 1982: Effect of specific gravity, moisture content, and temperature on fracture toughness of wood: Wood Science 15/2, 101–109

    Google Scholar 

  • Schniewind, A. P.; Pozniak, R. A. 1971: On the fracture toughness of Douglas Fir wood: Engng. fract. mechanics 2: 223–233

    Google Scholar 

  • Sih, G. C.; Paris, P. C.; Irwin, G. R. 1965: On cracks in rectilineary anisotropic bodies using singular isoparametric elements. Int. J. Fracture Mech. 1: 189–203

    Google Scholar 

  • Stanzl-Tschegg, S. E.; Tschegg, E. K.; Teischinger, A. 1993: Fracture energy of Spruce wood after different drying procedures. Wood and Fiber Science, accepted

  • Teischinger, A. 1992: Der Einfluß des Trocknungsverfahrens auf ausgewählte Holzkennwerte, Teil 2: Holzforschung und Holzverwertung, 44, 5: 83–86

    Google Scholar 

  • Triboulot, P.; Jodin, P.; Pluvinage, G. 1984: Validity of fracture mechanics concepts applied to wood by finite element calculation. Wood Sci. and Techn. 51–57

  • Tschegg, E. K. 1986: Patent AT-390328: Prüfeinrichtung zur Ermittlung von bruchmechanischen Kennewertensowie hiefür geeigneter Prüfkörper

  • Tschegg, E. K. 1990: Patent AT-396997: Lasteinleitungsvorrichtung

  • Tschegg, E. K. 1991: New equipments for fracture tests in concrete. Mat. Prüf 33: 338–342

    Google Scholar 

  • Tschegg, E. K.; Hummer, K.; Weber, W. 1993: Fracture test in Mode I on fiber reinforced plastics: J. of Mat. Sci. 28, 2471–2480

    Google Scholar 

  • Tschegg, E. K.; Tan, D. M.; Stanzl-Tschegg, S. E. 1993: Development and experience with the wedge splitting test. Submitted to ASTM Testing and Evaluation

  • Valentin, G.; Adjanohoun, 1992: Applicability of classical isotropic fracture mechanics specimens to wood crack propagation studies. Materials and Struct. 25: 3–13

    Google Scholar 

  • VanMier, G. G. M. 1991: Mode I fracture of concrete: discontinuous crack growth and crack interface grain bridging. Cement and Concrete Research, 21, Perg. Press, USA, 1–15

    Google Scholar 

  • Zikmunda, W. 1992: Bruchmechanische Charakterisierung des Haftvemögens zementgebundener Werkstoffe. Ph.D. thesis TU Wien

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors thank Dr. A. Teischinger for supplying the testing material and Dipl. Ing M. Elser for preparation of the diagrams. Financial support of the Fonds zur Förderung der wissenschaftlichen Forschung, Wien is gratefully acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanzl-Tschegg, S.E., Tan, DM. & Tschegg, E.K. New splitting method for wood fracture characterization. Wood Sci.Technol. 29, 31–50 (1995). https://doi.org/10.1007/BF00196930

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00196930

Keywords

Navigation